53 research outputs found

    MAC Protocol Design for the Support of DBA in OFDMA-PON Networks

    Get PDF
    Wansu Lim, Ali Gliwan, Pandelis Kourtessis, Konstantinos Kanonakis, Ioannis Tomkos, John Senior, 'MAC Protocol Design for the Support of DBA in OFDMA-PON Networks', Paper presented at the Future Network and Mobile Summit, 15-17 June 2011, Warsaw, Poland.Original MAC frame formats have been developed to provide recommendations for new protocol designs in OFDMA-PONs. The portrayed scalability of the Dynamic Subcarrier Allocation (DScA) protocol is complemented by the granularity of hybrid OFDMA/TDMA topologies. Modelling of the DScA performance in OPNET has recorded the maximum 312.5 Mbits/s transmission rate capacity per ONU achieved at less than 2 ms packet delay and more than 95% network throughput depending on ONU offered load.Peer reviewe

    Dynamic Bandwidth Allocation in Heterogeneous OFDMA-PONs Featuring Intelligent LTE-A Traffic Queuing

    Get PDF
    This work was supported by the ACCORDANCE project, through the 7th ICT Framework Programme. This is an Accepted Manuscript of an article accepted for publication in Journal of Lightwave Technology following peer review. © 2014 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A heterogeneous, optical/wireless dynamic bandwidth allocation framework is presented, exhibiting intelligent traffic queuing for practically controlling the quality-of-service (QoS) of mobile traffic, backhauled via orthogonal frequency division multiple access–PON (OFDMA-PON) networks. A converged data link layer is presented between long term evolution-advanced (LTE-A) and next-generation passive optical network (NGPON) topologies, extending beyond NGPON2. This is achieved by incorporating in a new protocol design, consistent mapping of LTE-A QCIs and OFDMA-PON queues. Novel inter-ONU algorithms have been developed, based on the distribution of weights to allocate subcarriers to both enhanced node B/optical network units (eNB/ONUs) and residential ONUs, sharing the same infrastructure. A weighted, intra-ONU scheduling mechanism is also introduced to control further the QoS across the network load. The inter and intra-ONU algorithms are both dynamic and adaptive, providing customized solutions to bandwidth allocation for different priority queues at different network traffic loads exhibiting practical fairness in bandwidth distribution. Therefore, middle and low priority packets are not unjustifiably deprived in favor of high priority packets at low network traffic loads. Still the protocol adaptability allows the high priority queues to automatically over perform when the traffic load has increased and the available bandwidth needs to be rationally redistributed. Computer simulations have confirmed that following the application of adaptive weights the fairness index of the new scheme (representing the achieved throughput for each queue), has improved across the traffic load to above 0.9. Packet delay reduction of more than 40ms has been recorded as a result for the low priority queues, while high priories still achieve sufficiently low packet delays in the range of 20 to 30msPeer reviewe

    Energy-efficiency improvements for optical access

    Get PDF
    This article discusses novel approaches to improve energy efficiency of different optical access technologies, including time division multiplexing passive optical network (TDM-PON), time and wavelength division multiplexing PON (TWDM-PON), point-to-point (PTP) access network, wavelength division multiplexing PON (WDM-PON), and orthogonal frequency division multiple access PON (OFDMA-PON). These approaches include cyclic sleep mode, energy-efficient bit interleaving protocol, power reduction at component level, or frequency band selection. Depending on the target optical access technology, one or a combination of different approaches can be applied

    Design and Analysis of IPACT-based Bandwidth Allocation for Delay-Guarantee in OFDMA-PON

    Get PDF
    To guarantee delay performances for timesensitive services in an orthogonal frequency-division multiple access passive optical network (OFDMA-PON), we propose a two-dimension (i.e., subcarriers and time) upstream bandwidth allocation method based on interleaved polling with adaptive cycle time (IPACT). We first analyze its delay performance in terms of cycle time, i.e., the length of a polling cycle. Then, by setting the maximum polling cycle so as to guarantee timely transmissions for time-sensitive services, we identify the requirements, i.e., maximum bandwidth allocation, maximum number of allowed optical network units (ONUs), and optimum number of subcarriers, for upstream bandwidth allocation with delay guarantees. The proposed scheme is evaluated both numerically and via simulation

    Dynamic Subcarrier Allocation for 100 Gbps, 40 km OFDMA-PONs with SLA and CoS

    Get PDF
    This paper was published in Journal of Lightwave Technology and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/jlt/issue.cfm?volume=31&issue=7 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under lawThe quality of service of 100Gbps orthogonal frequency division multiple access passive optical networks (OFDMA-PONs) performing dynamic bandwidth allocation is evaluated. New medium access control protocols and frame formats have been developed, exhibiting hybrid OFDMA/time division multiple access scheduling, for capacity enhancement and granular bandwidth allocation. The sequential dynamic subcarrier allocation algorithms allow the network optical line terminal to grant the optical network units (ONUs) bandwidth using both status and non-status based algorithm. Simulations of a 100 Gbps network with 256 ONUs, 256 subcarriers and 40 km extended-reach demonstrate best network throughputs of 87.5 Gbps and 3 ms packet delays for high priority service classes, even at maximum ONU load. In addition, high service level agreement (SLA) ONUs exhibit 1.56 Gbps maximum capacity and 48.82 kbps granularity.Peer reviewedFinal Accepted Versio

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Time and frequency offsets in all optical OFDM systems

    Get PDF
    Ultra-high-speed data transmission (terabit-per-second per channel) is urgently required in optical communication systems to fulfill the emerging demands of 3D multimedia applications, cloud computing, and bandwidth-hungry applications. In one way by using singlecarrier optical communication systems for the data transmission rates 1 Tb/s, we need the high baud rate and/or the high-order modulation formats (i.e. 512-QAM, 1024-QAM). Another way is to group the data carrying subcarriers without a guard bands (tightly spaced) to form a superchannel which gives increase in channel capacity. In a superchannel, the requirements of high-order modulation formats and high baud rates are relaxed. In an alloptical orthogonal frequency division multiplexing (AO-OFDM) system, the subcarriers are orthogonal and closely packed which gives more suitability to form superchannel. This thesis focuses on the time and frequency offsets in AO-OFDM systems. A theoretical model to investigate the performance of on-off-keying (OOK) modulated AO-OFDM system is developed for analytical simulation. The analytical (statistical) model considers the random characteristics of time and frequency offsets in adjacent subcarriers as well as the common noise sources such as shot and thermal noises to calculate the interference variances for evaluating the BER performance. The effects of time and frequency offsets on the BER performance of AO-OFDM system is evaluated with the number of optical subcarriers (NSC), receiver bandwidth (BWRX), and cyclic prefix (CP) We further develop an analytical model to evaluate the performance of AO-OFDM system with advanced modulation format (M-QAM) in the presence of time and frequency offsets, and the performance is compared with numerical simulations of other emulation setups (oddand- even subcarriers and decorrelated systems). The performance is investigated with NSC, BWRX, and CP in AO-OFDM system. A delay-line interferometer based all-optical method to reduce the effects of time and frequency offsets is proposed and evaluated. Finally, performance of demultiplexed subcarriers from an optical discrete Fourier transform (O-DFT) in AO-OFDM system in the presence of chromatic dispersion and limited modulation bandwidth is evaluated. The fiber Bragg grating (FBG) based passive device is proposed to reduce the interference and the results are compared with existing method using sampling gates. The proposed method using FBG for interference reduction provides a cost-effective design of AO-OFDM system

    Integration of Hybrid Passive Optical Networks (PON) with Radio over Fiber (RoF)

    Get PDF
    A cost effective, robust, and high capacity access network necessitated to meet the mounting customer demands for bandwidth-desirous services. A remarkable evolution of access networks is observed both in wired and wireless, predominantly driven by ever-changing bandwidth requirements. A wireless connection releases the end user from the restrictions of a physical link to a network that results in mobility, flexibleness, and ease of use. Whereas, optical networks offer immense amount of bandwidth that appease the most bandwidth voracious customers compared to bandwidth limited wireless networks. The integration of wired and wireless domains in the access landscape that presents a technical analysis of optical architectures suitable to support radio over fiber (RoF) is the objective of this chapter. Investigate the main trends that drive the merger of fiber and wireless technologies in access networks. Moreover, study the primary terms and the particular transmission features of integrated fiber-radio links to form a well-defined classification of hybrid systems and techniques. This work also recognizes the major problems for realization of RoF systems and examines the limitation, advantages, and diversity of integrated RoF-PON technology
    • 

    corecore