1,768 research outputs found

    High-performance architectures for IP-based multihop 802.11 networks

    Get PDF
    The concept of a forwarding node, which receives packets from upstream nodes and then transmits these packets to downstream nodes, is a key element of any multi-hop network, wired or wireless. While high-speed IP router architectures have been extensively studied for wired networks, the concept of a “wireless IP router ” has not been addressed so far. In this paper, we examine the limitations of the IEEE 802.11 MAC protocol in supporting a low-latency and high-throughput IP datapath comprising multiple wireless LAN hops. We first propose a wireless IP forwarding architecture that uses MPLS with modifications to the 802.11 MAC to significantly improve the packet forwarding efficiency. We then study further enhancements to the 802.11 MAC that improve the system throughput by allowing a larger number of concurrent packet transmissions in multi-hop 802.11-based IP networks. With 802.11 poised to be the dominant technology for wireless LANs, we believe a combined approach to MAC, packet forwarding and transport layer protocols is needed to make highperformance multi-hop 802.11 networks practically viable. 1

    IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs [Medium access control protocols for wireless LANs]

    Get PDF
    IEEE 802.11n is an ongoing next-generation wireless LAN standard that supports a very highspeed connection with more than 100 Mb/s data throughput measured at the medium access control layer. This article investigates the key MAC enhancements that help 802.11n achieve high throughput and high efficiency. A detailed description is given for various frame aggregation mechanisms proposed in the latest 802.11n draft standard. Our simulation results confirm that A-MSDU, A-MPDU, and a combination of these methods improve extensively the channel efficiency and data throughput. We analyze the performance of each frame aggregation scheme in distinct scenarios, and we conclude that overall, the two-level aggregation is the most efficacious

    Adaptive delayed channel access for IEEE 802.11n WLANs

    Get PDF
    Abstract— In this paper we investigate potential benefits that an adaptive delayed channel access algorithm can attain for the next-generation wireless LANs, the IEEE 802.11n. We show that the performance of frame aggregation introduced by the 802.11n adheres due to the priority mechanism of the legacy 802.11e EDCA scheduler, resulting in a poor overall performance. Because high priority flows have low channel utilization, the low priority flows throughputs can be amerced further. By introducing an additional delay at the MAC layer, before the channel access scheduling, it will retain aggregate sizes at higher numbers and consequently a better channel utilization. Also, in order to support both UDP and TCP transport layer protocols, the algorithm’s operational conditions are kept adaptive. The simulation results demonstrate that our proposed adaptive delayed channel access outperforms significantly the current 802.11n specification and non-adaptive delayed channel access

    Reverse direction transmission using single data frame and multi data frames to improve the performance of mac layer based on IEEE 802.11N

    Get PDF
    Reverse direction transmission and block ACK are effective ways to improve the performance of MAC layer that reduces the overhead and increases the system throughput. As high as 600 Mbps of physical data rate is achieved in IEEE 802.11n where high data rate of the current MAC layer leads to a high performance overhead and low performance throughput. Further,designing the MAC layer is still ongoing to achieve high performance throughput. In this paper, we examine the performance enhancement of the proposed 802.11n MAC layer in terms of reverse direction transmission using a single data frame and multi data frames. We implemented these schemes in the NS2 simulator to show the results for TCP traffic and compared them with the literature

    Reverse Direction Transmission in Wireless Networks: Review

    Get PDF
    Reverse direction mechanism is a promising significant development that may lead to promoting the accuracy of TXOP. The transfer, in conventional TXOP operation, is one way direction out of the station which holds the TXOP and which is not applied to some network services using two lane traffic namely VoIP and on-line gaming. Therefore, the conventional TXOP operation enhances only the forward direction transfer, but not the reverse direction transfer. Moreover, reverse direction mechanism makes it possible for the holder of TXOP to reserve unused TXOP time for its receivers which may improve the channel utilization as well as the performance of reverse direction traffic flows. It is well-known that the reverse direction transfer scheme aims mainly to improve the effectiveness and that plays a key role in reducing the overhead and increasing the system throughput. Thus, this paper provides an overview of a research progress in reverse direction transmission scheme over high speed wireless LANs. Moreover, it addresses the reverse direction mechanism that has been proposed for the next generation wireless networks and the ones adopted by IEEE 802.11n standard. Furthermore, it stresses the reverse issues that require to be dealt with in order to bring further progress to the reverse direction transmission

    Performance modelling of fairness in IEEE 802.11 wireless LAN protocols

    Get PDF
    PhD ThesisWireless communication has become a key technology in the modern world, allowing network services to be delivered in almost any environment, without the need for potentially expensive and invasive fixed cable solutions. However, the level of performance experienced by wireless devices varies tremendously on location and time. Understanding the factors which can cause variability of service is therefore of clear practical and theoretical interest. In this thesis we explore the performance of the IEEE 802.11 family of wireless protocols, which have become the de facto standard for Wireless Local Area Networks (WLANs). The specific performance issue which is investigated is the unfairness which can arise due to the spatial position of nodes in the network. In this work we characterise unfairness in terms of the difference in performance (e.g. throughput) experienced by different pairs of communicating nodes within a network. Models are presented using the Markovian process algebra PEPA which depict different scenarios with three of the main protocols, IEEE 802.11b, IEEE 802.11g and IEEE 802.11n. The analysis shows that performance is affected by the presence of other nodes (including in the well-known hidden node case), by the speed of data and the size of the frames being transmitted. The collection of models and analysis in this thesis collectively provides not only an insight into fairness in IEEE 802.11 networks, but it also represents a significant use case in modelling network protocols using PEPA. PEPA and other stochastic process algebra are extremely powerful tools for efficiently specifying models which might be very complex to study using conventional simulation approaches. Furthermore the tool support for PEPA facilitates the rapid solution of models to derive key metrics which enable the modeller to gain an understanding of the network behaviour across a wide range of operating conditions. From the results we can see that short frames promote a greater fairness due to the more frequent spaces between frames allowing other senders to transmit. An interesting consequence of these findings is the observation that varying frame length can play a role in addressing topological unfairness, which leads to the analysis of a novel model of IEEE 802.11g with variable frame lengths. While varying frame lengths might not always be practically possible, as frames need to be long enough for collisions to be detected, IEEE 802.11n supports a number of mechanisms for frame aggregation, where successive frames may be sent in series with little or no delay between them. We therefore present a novel model of IEEE 802.11n with frame aggregation to explore how this approach affects fairness and, potentially, can be used to address unfairness by allowing affected nodes to transmit longer frame bursts.Kurdistan Region Government of Iraq (KRG) sponso

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal
    • …
    corecore