5,798 research outputs found

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks

    Get PDF
    MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deployment of mmWave base stations were proposed. This Thesis aims to improve the reliability and performance of the 5G network by studying its tight and seamless integration with the current LTE cellular network. In particular, the LTE base stations can provide a coverage layer for 5G mobile terminals, because they operate on microWave frequencies, which are less sensitive to blockage and have a lower pathloss. This document is a copy of the Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorzi. It will propose an LTE-5G tight integration architecture, based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns-3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G.Comment: Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorz

    Optimal Real-time Spectrum Sharing between Cooperative Relay and Ad-hoc Networks

    Full text link
    Optimization based spectrum sharing strategies have been widely studied. However, these strategies usually require a great amount of real-time computation and significant signaling delay, and thus are hard to be fulfilled in practical scenarios. This paper investigates optimal real-time spectrum sharing between a cooperative relay network (CRN) and a nearby ad-hoc network. Specifically, we optimize the spectrum access and resource allocation strategies of the CRN so that the average traffic collision time between the two networks can be minimized while maintaining a required throughput for the CRN. The development is first for a frame-level setting, and then is extended to an ergodic setting. For the latter setting, we propose an appealing optimal real-time spectrum sharing strategy via Lagrangian dual optimization. The proposed method only involves a small amount of real-time computation and negligible control delay, and thus is suitable for practical implementations. Simulation results are presented to demonstrate the efficiency of the proposed strategies.Comment: One typo in the caption of Figure 5 is correcte

    Frame Structure Design and Analysis for Millimeter Wave Cellular Systems

    Full text link
    The millimeter-wave (mmWave) frequencies have attracted considerable attention for fifth generation (5G) cellular communication as they offer orders of magnitude greater bandwidth than current cellular systems. However, the medium access control (MAC) layer may need to be significantly redesigned to support the highly directional transmissions, ultra-low latencies and high peak rates expected in mmWave communication. To address these challenges, we present a novel mmWave MAC layer frame structure with a number of enhancements including flexible, highly granular transmission times, dynamic control signal locations, extended messaging and ability to efficiently multiplex directional control signals. Analytic formulae are derived for the utilization and control overhead as a function of control periodicity, number of users, traffic statistics, signal-to-noise ratio and antenna gains. Importantly, the analysis can incorporate various front-end MIMO capability assumptions -- a critical feature of mmWave. Under realistic system and traffic assumptions, the analysis reveals that the proposed flexible frame structure design offers significant benefits over designs with fixed frame structures similar to current 4G long-term evolution (LTE). It is also shown that fully digital beamforming architectures offer significantly lower overhead compared to analog and hybrid beamforming under equivalent power budgets.Comment: Submitted to IEEE Transactions for Wireless Communication
    • …
    corecore