3 research outputs found

    A novel Chebyshev wavelet method for solving fractional-order optimal control problems

    Get PDF
    This thesis presents a numerical approach based on generalized fractional-order Chebyshev wavelets for solving fractional-order optimal control problems. The exact value of the Riemann– Liouville fractional integral operator of the generalized fractional-order Chebyshev wavelets is computed by applying the regularized beta function. We apply the given wavelets, the exact formula, and the collocation method to transform the studied problem into a new optimization problem. The convergence analysis of the proposed method is provided. The present method is extended for solving fractional-order, distributed-order, and variable-order optimal control problems. Illustrative examples are considered to show the advantage of this method in comparison with the existing methods in the literature

    On a multiwavelet spectral element method for integral equation of a generalized Cauchy problem

    Get PDF
    In this paper we deal with construction and analysis of a multiwavelet spectral element scheme for a generalized Cauchy type problem with Caputo fractional derivative. Numerical schemes for this type of problems, often suffer from the draw-back of spurious oscillations. A common remedy is to render the problem to an equivalent integral equation. For the generalized Cauchy type problem, a corresponding integral equation is of nonlinear Volterra type. In this paper we investigate wellposedness and convergence of a stabilizing multiwavelet scheme for a, one-dimensional case (in [a,\ua0b] or [0,\ua01]), of this problem. Based on multiwavelets, we construct an approximation procedure for the fractional integral operator that yields a linear system of equations with sparse coefficient matrix. In this setting, choosing an appropriate threshold, the number of non-zero coefficients in the system is substantially reduced. A severe obstacle in the convergence analysis is the lack of continuous derivatives in the vicinity of the inflow/ starting boundary point. We overcome this issue through separating a J (mesh)-dependent, small, neighborhood of a (or origin) from the interval, where we only take L2-norm. The estimate in this part relies on Chebyshev polynomials, viz. As reported by Richardson(Chebyshev interpolation for functions with endpoint singularities via exponential and double-exponential transforms, Oxford University, UK, 2012) and decreases, almost, exponentially by raising J. At the remaining part of the domain the solution is sufficiently regular to derive the desired optimal error bound. We construct such a modified scheme and analyze its wellposedness, efficiency and accuracy. The robustness of the proposed scheme is confirmed implementing numerical examples

    Stability analysis of linear ODE-PDE interconnected systems

    Get PDF
    Les systèmes de dimension infinie permettent de modéliser un large spectre de phénomènes physiques pour lesquels les variables d'états évoluent temporellement et spatialement. Ce manuscrit s'intéresse à l'évaluation de la stabilité de leur point d'équilibre. Deux études de cas seront en particulier traitées : l'analyse de stabilité des systèmes interconnectés à une équation de transport, et à une équation de réaction-diffusion. Des outils théoriques existent pour l'analyse de stabilité de ces systèmes linéaires de dimension infinie et s'appuient sur une algèbre d'opérateurs plutôt que matricielle. Cependant, ces résultats d'existence soulèvent un problème de constructibilité numérique. Lors de l'implémentation, une approximation est réalisée et les résultats sont conservatifs. La conception d'outils numériques menant à des garanties de stabilité pour lesquelles le degré de conservatisme est évalué et maîtrisé est alors un enjeu majeur. Comment développer des critères numériques fiables permettant de statuer sur la stabilité ou l'instabilité des systèmes linéaires de dimension infinie ? Afin de répondre à cette question, nous proposons ici une nouvelle méthode générique qui se décompose en deux temps. D'abord, sous l'angle de l'approximation sur les polynômes de Legendre, des modèles augmentés sont construits et découpent le système original en deux blocs : d'une part, un système de dimension finie approximant est isolé, d'autre part, l'erreur de troncature de dimension infinie est conservée et modélisée. Ensuite, des outils fréquentiels et temporels de dimension finie sont déployés afin de proposer des critères de stabilité plus ou moins coûteux numériquement en fonction de l'ordre d'approximation choisi. En fréquentiel, à l'aide du théorème du petit gain, des conditions suffisantes de stabilité sont obtenues. En temporel, à l'aide du théorème de Lyapunov, une sous-estimation des régions de stabilité est proposée sous forme d'inégalité matricielle linéaire et une sur-estimation sous forme de test de positivité. Nos deux études de cas ont ainsi été traitées à l'aide de cette méthodologie générale. Le principal résultat obtenu concerne le cas des systèmes EDO-transport interconnectés, pour lequel l'approximation et l'analyse de stabilité à l'aide des polynômes de Legendre mène à des estimations des régions de stabilité qui convergent exponentiellement vite. La méthode développée dans ce manuscrit peut être adaptée à d'autres types d'approximations et exportée à d'autres systèmes linéaires de dimension infinie. Ce travail ouvre ainsi la voie à l'obtention de conditions nécessaires et suffisantes de stabilité de dimension finie pour les systèmes de dimension infinie.Infinite dimensional systems allow to model a large panel of physical phenomena for which the state variables evolve both temporally and spatially. This manuscript deals with the evaluation of the stability of their equilibrium point. Two case studies are treated in particular: the stability analysis of ODE-transport, and ODE-reaction-diffusion interconnected systems. Theoretical tools exist for the stability analysis of these infinite-dimensional linear systems and are based on an operator algebra rather than a matrix algebra. However, these existence results raise a problem of numerical constructibility. During implementation, an approximation is performed and the results are conservative. The design of numerical tools leading to stability guarantees for which the degree of conservatism is evaluated and controlled is then a major issue. How can we develop reliable numerical criteria to rule on the stability or instability of infinite-dimensional linear systems? In order to answer this question, one proposes here a new generic method, which is decomposed in two steps. First, from the perspective of Legendre polynomials approximation, augmented models are built and split the original system into two blocks: on the one hand, a finite-dimensional approximated system is isolated, on the other hand, the infinite-dimensional truncation error is preserved and modeled. Then, frequency and time tools of finite dimension are deployed in order to propose stability criteria that have high or low numerical load depending on the approximated order. In frequencies, with the aid of the small gain theorem, sufficient stability conditions are obtained. In temporal, with the aid of the Lyapunov theorem, an under estimate of the stability regions is proposed as a linear matrix inequality and an over estimate as a positivity test. Our two case studies have been treated with this general methodology. The main result concerns the case of ODE-transport interconnected systems, for which the approximation and stability analysis using Legendre polynomials leads to exponentially fast converging estimates of stability regions. The method developed in this manuscript can be adapted to other types of approximations and exported to other infinite-dimensional linear systems. Thus, this work opens the way to obtain necessary and sufficient finite-dimensional conditions of stability for infinite-dimensional systems
    corecore