55 research outputs found

    Two-stage index computation for bandits with switching penalties I : switching costs

    Get PDF
    This paper addresses the multi-armed bandit problem with switching costs. Asawa and Teneketzis (1996) introduced an index that partly characterizes optimal policies, attaching to each bandit state a "continuation index" (its Gittins index) and a "switching index". They proposed to jointly compute both as the Gittins index of a bandit having 2n states — when the original bandit has n states — which results in an eight-fold increase in O(n^3) arithmetic operations relative to those to compute the continuation index alone. This paper presents a more efficient, decoupled computation method, which in a first stage computes the continuation index and then, in a second stage, computes the switching index an order of magnitude faster in at most n^2+O(n) arithmetic operations. The paper exploits the fact that the Asawa and Teneketzis index is the Whittle, or marginal productivity, index of a classic bandit with switching costs in its restless reformulation, by deploying work-reward analysis and PCL-indexability methods introduced by the author. A computational study demonstrates the dramatic runtime savings achieved by the new algorithm, the near-optimality of the index policy, and its substantial gains against the benchmark Gittins index policy across a wide range of instances

    On a make-to-stock production/mountain model with hysteretic control

    Get PDF
    We consider a make-to-stock production-inventory model with one machine that produces stock in a buffer. The machine is subject to breakdowns. During up periods, the machine fils the buffer at a level-dependent rate a(x) > 0. During down periods, the production rate is zero, and the demand rate is either ß(x) > 0 or ¿(x) > 0 when the inventory level is x; which of the two demand rates applies depends on a hysteretic control policy. We determine the conditions under which the steady-state distribution of the inventory level exists, and we derive that distribution. Other performance measures under consideration are the number of switches from ß(.) to ¿(.) per busy period, the busy period distribution, and the overshoot above a particular hysteretic level

    Two-stage index computation for bandits with switching penalties I : switching costs

    Get PDF
    This paper addresses the multi-armed bandit problem with switching costs. Asawa and Teneketzis (1996) introduced an index that partly characterizes optimal policies, attaching to each bandit state a "continuation index" (its Gittins index) and a "switching index". They proposed to jointly compute both as the Gittins index of a bandit having 2n states — when the original bandit has n states — which results in an eight-fold increase in O(n3n^{3}) arithmetic operations relative to those to compute the continuation index alone. This paper presents a more efficient, decoupled computation method, which in a first stage computes the continuation index and then, in a second stage, computes the switching index an order of magnitude faster in at most n2n^{2}+O(n) arithmetic operations. The paper exploits the fact that the Asawa and Teneketzis index is the Whittle, or marginal productivity, index of a classic bandit with switching costs in its restless reformulation, by deploying work-reward analysis and PCL-indexability methods introduced by the author. A computational study demonstrates the dramatic runtime savings achieved by the new algorithm, the near-optimality of the index policy, and its substantial gains against the benchmark Gittins index policy across a wide range of instances.

    Dynamic resource allocation for energy management in data centers

    Get PDF
    In this dissertation we study the problem of allocating computational resources and managing applications in a data center to serve incoming requests in such a way that the energy usage, reliability and quality of service considerations are balanced. The problem is motivated by the growing energy consumption by data centers in the world and their overall inefficiency. This work is focused on designing flexible and robust strategies to manage the resources in such a way that the system is able to meet the service agreements even when the load conditions change. As a first step, we study the control of a Markovian queueing system with controllable number of servers and service rates (M=Mt=kt ) to minimize effort and holding costs. We present structural properties of the optimal policy and suggest an algorithm to find good performance policies even for large cases. Then we present a reactive/proactive approach, and a tailor-made wavelet-based forecasting procedure to determine the resource allocation in a single application setting; the method is tested by simulation with real web traces. The main feature of this method is its robustness and flexibility to meet QoS goals even when the traffic behavior changes. The system was tested by simulating a system with a time service factor QoS agreement. Finally, we consider the multi-application setting and develop a novel load consolidation strategy (of combining applications that are traditionally hosted on different servers) to reduce the server-load variability and the number of booting cycles in order to obtain a better capacity allocation

    Multi-threshold Control of the BMAP/SM/1/K Queue with Group Services

    Get PDF
    We consider a finite capacity queue in which arrivals occur according to a batch Markovian arrival process (BMAP). The customers are served in groups of varying sizes. The services are governed by a controlled semi-Markovian process according to a multithreshold strategy. We perform the steady-state analysis of this model by computing (a) the queue length distributions at departure and arbitrary epochs, (b) the Laplace-Stieltjes transform of the sojourn time distribution of an admitted customer, and (c) some selected system performance measures. An optimization problem of interest is presented and some numerical examples are illustrated

    Two-stage index computation for bandits with switching penalties II : switching delays

    Get PDF
    This paper addresses the multi-armed bandit problem with switching penalties including both costs and delays, extending results of the companion paper [J. Niño-Mora. "Two-Stage Index Computation for Bandits with Switching Penalties I: Switching Costs". Conditionally accepted at INFORMS J. Comp.], which addressed the no switching delays case. Asawa and Teneketzis (1996) introduced an index for bandits with delays that partly characterizes optimal policies, attaching to each bandit state a "continuation index" (its Gittins index) and a "switching index", yet gave no algorithm for it. This paper presents an efficient, decoupled computation method, which in a first stage computes the continuation index and then, in a second stage, computes the switching index an order of magnitude faster in at most (5/2)n3n^{3}+O(n) arithmetic operations for an n -state bandit. The paper exploits the fact that the Asawa and Teneketzis index is the Whittle, or marginal productivity, index of a classic bandit with switching penalties in its semi- Markov restless reformulation, by deploying work-reward analysis and LP-indexability methods introduced by the author. A computational study demonstrates the dramatic runtime savings achieved by the new algorithm, the near-optimality of the index policy, and its substantial gains against a benchmark index policy across a wide instance range.

    Two-stage index computation for bandits with switching penalties II : switching delays

    Get PDF
    This paper addresses the multi-armed bandit problem with switching penalties including both costs and delays, extending results of the companion paper [J. Niño-Mora. "Two-Stage Index Computation for Bandits with Switching Penalties I: Switching Costs". Conditionally accepted at INFORMS J. Comp.], which addressed the no switching delays case. Asawa and Teneketzis (1996) introduced an index for bandits with delays that partly characterizes optimal policies, attaching to each bandit state a "continuation index" (its Gittins index) and a "switching index", yet gave no algorithm for it. This paper presents an efficient, decoupled computation method, which in a first stage computes the continuation index and then, in a second stage, computes the switching index an order of magnitude faster in at most (5/2)n^3+O(n) arithmetic operations for an n -state bandit. The paper exploits the fact that the Asawa and Teneketzis index is the Whittle, or marginal productivity, index of a classic bandit with switching penalties in its semi- Markov restless reformulation, by deploying work-reward analysis and LP-indexability methods introduced by the author. A computational study demonstrates the dramatic runtime savings achieved by the new algorithm, the near-optimality of the index policy, and its substantial gains against a benchmark index policy across a wide instance range

    Simulation Modeling and Analysis of Adjustable Service-Rate Queueing Models that Incorporate Feedback Control

    Get PDF
    Research shows that in a system model, when the production rate is adjusted based on the number of items in queue, the nature of the model changes from an open-loop queueing system to a closed-loop feedback control system. Service-rate adjustment can be implemented in a discrete event simulation model, but the effect of this adjustment has not been thoroughly analyzed in the literature. This research considers the design of feedback signals to generate realistic simulation models of production system behavior. A series of simulation experiments is conducted to provide practical guidance for simulation modelers on how adding a service-rate adjustment feedback loop to a queueing system affects system performance
    corecore