26 research outputs found

    Dynamic resource allocation for energy management in data centers

    Get PDF
    In this dissertation we study the problem of allocating computational resources and managing applications in a data center to serve incoming requests in such a way that the energy usage, reliability and quality of service considerations are balanced. The problem is motivated by the growing energy consumption by data centers in the world and their overall inefficiency. This work is focused on designing flexible and robust strategies to manage the resources in such a way that the system is able to meet the service agreements even when the load conditions change. As a first step, we study the control of a Markovian queueing system with controllable number of servers and service rates (M=Mt=kt ) to minimize effort and holding costs. We present structural properties of the optimal policy and suggest an algorithm to find good performance policies even for large cases. Then we present a reactive/proactive approach, and a tailor-made wavelet-based forecasting procedure to determine the resource allocation in a single application setting; the method is tested by simulation with real web traces. The main feature of this method is its robustness and flexibility to meet QoS goals even when the traffic behavior changes. The system was tested by simulating a system with a time service factor QoS agreement. Finally, we consider the multi-application setting and develop a novel load consolidation strategy (of combining applications that are traditionally hosted on different servers) to reduce the server-load variability and the number of booting cycles in order to obtain a better capacity allocation

    Queues with delays in two-state strategies and Lévy input

    Get PDF
    We consider a reflected Lévy process without negative jumps, starting at the origin. When the reflected process first upcrosses level K, a timer is activated. After D time units, the timer expires and the Lévy exponent of the Lévy process is changed. As soon as the process hits zero again, the Lévy exponent reverses to the original function. If the process has reached the origin before the timer expires then the Lévy exponent does not change. Using martingale techniques, we analyze the steady-state distribution of the resulting process, reflected at the origin. We pay special attention to the cases of deterministic and exponential timers, and to the following three special Lévy processes: (i) a compound Poisson process plus negative drift (corresponding to an M/G/1 queue), (ii) Brownian motion, and (iii) a Lévy process that is a subordinator until the timer expires. © Applied Probability Trust 2008

    Queueing System with Potential for Recruiting Secondary Servers

    Get PDF
    In this paper, we consider a single server queueing system in which the arrivals occur according to a Markovian arrival process (MAP). The served customers may be recruited (or opted from those customers’ point of view) to act as secondary servers to provide services to the waiting customers. Such customers who are recruited to be servers are referred to as secondary servers. The service times of the main as well as that of the secondary servers are assumed to be exponentially distributed possibly with different parameters. Assuming that at most there can only be one secondary server at any given time and that the secondary server will leave after serving its assigned group of customers, the model is studied as a QBD-type queue. However, one can also study this model as a G I/M/1-type queue. The model is analyzed in steady state, and a few illustrative numerical examples are presented

    PERFORMANCE ANALYSIS AND OPTIMAL STAFFING OF TICKET QUEUES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore