2,791 research outputs found

    Multi-task Layout Analysis of Handwritten Musical Scores

    Get PDF
    [EN] Document Layout Analysis (DLA) is a process that must be performed before attempting to recognize the content of handwritten musical scores by a modern automatic or semiautomatic system. DLA should provide the segmentation of the document image into semantically useful region types such as staff, lyrics, etc. In this paper we extend our previous work for DLA of handwritten text documents to also address complex handwritten music scores. This system is able to perform region segmentation, region classification and baseline detection in an integrated manner. Several experiments were performed in two different datasets in order to validate this approach and assess it in different scenarios. Results show high accuracy in such complex manuscripts and very competent computational time, which is a good indicator of the scalability of the method for very large collections.This work was partially supported by the Universitat Politecnica de Valencia under grant FPI-420II/899, a 2017-2018 Digital Humanities research grant of the BBVA Foundation for the project Carabela, the History Of Medieval Europe (HOME) project (Ref.: PCI2018-093122) and through the EU project READ (Horizon-2020 program, grant Ref. 674943). NVIDIA Corporation kindly donated the Titan X GPU used for this research.Quirós, L.; Toselli, AH.; Vidal, E. (2019). Multi-task Layout Analysis of Handwritten Musical Scores. Springer. 123-134. https://doi.org/10.1007/978-3-030-31321-0_11S123134Burgoyne, J.A., Ouyang, Y., Himmelman, T., Devaney, J., Pugin, L., Fujinaga, I.: Lyric extraction and recognition on digital images of early music sources. In: Proceedings of the 10th International Society for Music Information Retrieval Conference, vol. 10, pp. 723–727 (2009)Calvo-Zaragoza, J., Toselli, A.H., Vidal, E.: Probabilistic music-symbol spotting in handwritten scores. In: 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 558–563, August 2018Calvo-Zaragoza, J., Zhang, K., Saleh, Z., Vigliensoni, G., Fujinaga, I.: Music document layout analysis through machine learning and human feedback. In: 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 02, pp. 23–24, November 2017Calvo-Zaragoza, J., Castellanos, F.J., Vigliensoni, G., Fujinaga, I.: Deep neural networks for document processing of music score images. Appl. Sci. 8(5), 654 (2018). (2076-3417)Calvo-Zaragoza, J., Toselli, A.H., Vidal, E.: Handwritten music recognition for mensural notation: formulation, data and baseline results. In: 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1081–1086. IEEE (2017)Campos, V.B., Calvo-Zaragoza, J., Toselli, A.H., Ruiz, E.V.: Sheet music statistical layout analysis. In: 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 313–318. IEEE (2016)Castellanos, F.J., Calvo-Zaragoza, J., Vigliensoni, G., Fujinaga, I.: Document analysis of music score images with selectional auto-encoders. In: 19th International Society for Music Information Retrieval Conference, pp. 256–263 (2018)Grüning, T., Labahn, R., Diem, M., Kleber, F., Fiel, S.: READ-BAD: a new dataset and evaluation scheme for baseline detection in archival documents. CoRR abs/1705.03311 (2017). http://arxiv.org/abs/1705.03311Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (ICLR) (2015)Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Quirós, L.: Multi-task handwritten document layout analysis. ArXiv e-prints, 1806.08852 (2018). https://arxiv.org/abs/1806.08852Quirós, L., Bosch, V., Serrano, L., Toselli, A.H., Vidal, E.: From HMMs to RNNs: computer-assisted transcription of a handwritten notarial records collection. In: 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 116–121. IEEE, August 2018Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A.R., Guedes, C., Cardoso, J.S.: Optical music recognition: state-of-the-art and open issues. Int. J. Multimed. Inf. Retrieval 1(3), 173–190 (2012)Sánchez, J.A., Romero, V., Toselli, A.H., Villegas, M., Vidal, E.: ICDAR2017 competition on handwritten text recognition on the READ dataset. In: 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1383–1388. IEEE (2017)Suzuki, S., et al.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985

    Deep Neural Networks for Document Processing of Music Score Images

    Get PDF
    [EN] There is an increasing interest in the automatic digitization of medieval music documents. Despite efforts in this field, the detection of the different layers of information on these documents still poses difficulties. The use of Deep Neural Networks techniques has reported outstanding results in many areas related to computer vision. Consequently, in this paper, we study the so-called Convolutional Neural Networks (CNN) for performing the automatic document processing of music score images. This process is focused on layering the image into its constituent parts (namely, background, staff lines, music notes, and text) by training a classifier with examples of these parts. A comprehensive experimentation in terms of the configuration of the networks was carried out, which illustrates interesting results as regards to both the efficiency and effectiveness of these models. In addition, a cross-manuscript adaptation experiment was presented in which the networks are evaluated on a different manuscript from the one they were trained. The results suggest that the CNN is capable of adapting its knowledge, and so starting from a pre-trained CNN reduces (or eliminates) the need for new labeled data.This work was supported by the Social Sciences and Humanities Research Council of Canada, and Universidad de Alicante through grant GRE-16-04.Calvo-Zaragoza, J.; Castellanos, F.; Vigliensoni, G.; Fujinaga, I. (2018). Deep Neural Networks for Document Processing of Music Score Images. Applied Sciences. 8(5). https://doi.org/10.3390/app8050654S85Bainbridge, D., & Bell, T. (2001). Computers and the Humanities, 35(2), 95-121. doi:10.1023/a:1002485918032Byrd, D., & Simonsen, J. G. (2015). Towards a Standard Testbed for Optical Music Recognition: Definitions, Metrics, and Page Images. Journal of New Music Research, 44(3), 169-195. doi:10.1080/09298215.2015.1045424LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A. R. S., Guedes, C., & Cardoso, J. S. (2012). Optical music recognition: state-of-the-art and open issues. International Journal of Multimedia Information Retrieval, 1(3), 173-190. doi:10.1007/s13735-012-0004-6Louloudis, G., Gatos, B., Pratikakis, I., & Halatsis, C. (2008). Text line detection in handwritten documents. Pattern Recognition, 41(12), 3758-3772. doi:10.1016/j.patcog.2008.05.011Montagner, I. S., Hirata, N. S. T., & Hirata, R. (2017). Staff removal using image operator learning. Pattern Recognition, 63, 310-320. doi:10.1016/j.patcog.2016.10.002Calvo-Zaragoza, J., Micó, L., & Oncina, J. (2016). Music staff removal with supervised pixel classification. International Journal on Document Analysis and Recognition (IJDAR), 19(3), 211-219. doi:10.1007/s10032-016-0266-2Calvo-Zaragoza, J., Pertusa, A., & Oncina, J. (2017). Staff-line detection and removal using a convolutional neural network. Machine Vision and Applications, 28(5-6), 665-674. doi:10.1007/s00138-017-0844-4Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640-651. doi:10.1109/tpami.2016.2572683Kato, Z. (2011). Markov Random Fields in Image Segmentation. Foundations and Trends® in Signal Processing, 5(1-2), 1-155. doi:10.1561/2000000035Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.72679

    Music Encoding Conference Proceedings

    Get PDF
    UIDB/00693/2020 UIDP/00693/2020publishersversionpublishe

    Understanding Optical Music Recognition

    Get PDF
    For over 50 years, researchers have been trying to teach computers to read music notation, referred to as Optical Music Recognition (OMR). However, this field is still difficult to access for new researchers, especially those without a significant musical background: Few introductory materials are available, and, furthermore, the field has struggled with defining itself and building a shared terminology. In this work, we address these shortcomings by (1) providing a robust definition of OMR and its relationship to related fields, (2) analyzing how OMR inverts the music encoding process to recover the musical notation and the musical semantics from documents, and (3) proposing a taxonomy of OMR, with most notably a novel taxonomy of applications. Additionally, we discuss how deep learning affects modern OMR research, as opposed to the traditional pipeline. Based on this work, the reader should be able to attain a basic understanding of OMR: its objectives, its inherent structure, its relationship to other fields, the state of the art, and the research opportunities it affords

    End-to-End Neural Optical Music Recognition of Monophonic Scores

    Get PDF
    [EN] Optical Music Recognition is a field of research that investigates how to computationally decode music notation from images. Despite the efforts made so far, there are hardly any complete solutions to the problem. In this work, we study the use of neural networks that work in an end-to-end manner. This is achieved by using a neural model that combines the capabilities of convolutional neural networks, which work on the input image, and recurrent neural networks, which deal with the sequential nature of the problem. Thanks to the use of the the so-called Connectionist Temporal Classification loss function, these models can be directly trained from input images accompanied by their corresponding transcripts into music symbol sequences. We also present the Printed Images of Music Staves (PrIMuS) dataset, containing more than 80,000 monodic single-staff real scores in common western notation, that is used to train and evaluate the neural approach. In our experiments, it is demonstrated that this formulation can be carried out successfully. Additionally, we study several considerations about the codification of the output musical sequences, the convergence and scalability of the neural models, as well as the ability of this approach to locate symbols in the input score.This work was supported by the Social Sciences and Humanities Research Council of Canada, and the Spanish Ministerio de Economia y Competitividad through Project HISPAMUS Ref. No. TIN2017-86576-R (supported by UE FEDER funds).Calvo-Zaragoza, J.; Rizo, D. (2018). End-to-End Neural Optical Music Recognition of Monophonic Scores. Applied Sciences. 8(4). https://doi.org/10.3390/app8040606S8

    Text-based Sentiment Analysis and Music Emotion Recognition

    Get PDF
    Nowadays, with the expansion of social media, large amounts of user-generated texts like tweets, blog posts or product reviews are shared online. Sentiment polarity analysis of such texts has become highly attractive and is utilized in recommender systems, market predictions, business intelligence and more. We also witness deep learning techniques becoming top performers on those types of tasks. There are however several problems that need to be solved for efficient use of deep neural networks on text mining and text polarity analysis. First of all, deep neural networks are data hungry. They need to be fed with datasets that are big in size, cleaned and preprocessed as well as properly labeled. Second, the modern natural language processing concept of word embeddings as a dense and distributed text feature representation solves sparsity and dimensionality problems of the traditional bag-of-words model. Still, there are various uncertainties regarding the use of word vectors: should they be generated from the same dataset that is used to train the model or it is better to source them from big and popular collections that work as generic text feature representations? Third, it is not easy for practitioners to find a simple and highly effective deep learning setup for various document lengths and types. Recurrent neural networks are weak with longer texts and optimal convolution-pooling combinations are not easily conceived. It is thus convenient to have generic neural network architectures that are effective and can adapt to various texts, encapsulating much of design complexity. This thesis addresses the above problems to provide methodological and practical insights for utilizing neural networks on sentiment analysis of texts and achieving state of the art results. Regarding the first problem, the effectiveness of various crowdsourcing alternatives is explored and two medium-sized and emotion-labeled song datasets are created utilizing social tags. One of the research interests of Telecom Italia was the exploration of relations between music emotional stimulation and driving style. Consequently, a context-aware music recommender system that aims to enhance driving comfort and safety was also designed. To address the second problem, a series of experiments with large text collections of various contents and domains were conducted. Word embeddings of different parameters were exercised and results revealed that their quality is influenced (mostly but not only) by the size of texts they were created from. When working with small text datasets, it is thus important to source word features from popular and generic word embedding collections. Regarding the third problem, a series of experiments involving convolutional and max-pooling neural layers were conducted. Various patterns relating text properties and network parameters with optimal classification accuracy were observed. Combining convolutions of words, bigrams, and trigrams with regional max-pooling layers in a couple of stacks produced the best results. The derived architecture achieves competitive performance on sentiment polarity analysis of movie, business and product reviews. Given that labeled data are becoming the bottleneck of the current deep learning systems, a future research direction could be the exploration of various data programming possibilities for constructing even bigger labeled datasets. Investigation of feature-level or decision-level ensemble techniques in the context of deep neural networks could also be fruitful. Different feature types do usually represent complementary characteristics of data. Combining word embedding and traditional text features or utilizing recurrent networks on document splits and then aggregating the predictions could further increase prediction accuracy of such models

    Spectators’ aesthetic experiences of sound and movement in dance performance

    Get PDF
    In this paper we present a study of spectators’ aesthetic experiences of sound and movement in live dance performance. A multidisciplinary team comprising a choreographer, neuroscientists and qualitative researchers investigated the effects of different sound scores on dance spectators. What would be the impact of auditory stimulation on kinesthetic experience and/or aesthetic appreciation of the dance? What would be the effect of removing music altogether, so that spectators watched dance while hearing only the performers’ breathing and footfalls? We investigated audience experience through qualitative research, using post-performance focus groups, while a separately conducted functional brain imaging (fMRI) study measured the synchrony in brain activity across spectators when they watched dance with sound or breathing only. When audiences watched dance accompanied by music the fMRI data revealed evidence of greater intersubject synchronisation in a brain region consistent with complex auditory processing. The audience research found that some spectators derived pleasure from finding convergences between two complex stimuli (dance and music). The removal of music and the resulting audibility of the performers’ breathing had a significant impact on spectators’ aesthetic experience. The fMRI analysis showed increased synchronisation among observers, suggesting greater influence of the body when interpreting the dance stimuli. The audience research found evidence of similar corporeally focused experience. The paper discusses possible connections between the findings of our different approaches, and considers the implications of this study for interdisciplinary research collaborations between arts and sciences

    Rhythm, sound and sense : narrativity in Sun Wenbo

    Full text link
    • …
    corecore