1,800 research outputs found

    Quantum control theory and applications: A survey

    Full text link
    This paper presents a survey on quantum control theory and applications from a control systems perspective. Some of the basic concepts and main developments (including open-loop control and closed-loop control) in quantum control theory are reviewed. In the area of open-loop quantum control, the paper surveys the notion of controllability for quantum systems and presents several control design strategies including optimal control, Lyapunov-based methodologies, variable structure control and quantum incoherent control. In the area of closed-loop quantum control, the paper reviews closed-loop learning control and several important issues related to quantum feedback control including quantum filtering, feedback stabilization, LQG control and robust quantum control.Comment: 38 pages, invited survey paper from a control systems perspective, some references are added, published versio

    Sliding Mode Control of Two-Level Quantum Systems

    Full text link
    This paper proposes a robust control method based on sliding mode design for two-level quantum systems with bounded uncertainties. An eigenstate of the two-level quantum system is identified as a sliding mode. The objective is to design a control law to steer the system's state into the sliding mode domain and then maintain it in that domain when bounded uncertainties exist in the system Hamiltonian. We propose a controller design method using the Lyapunov methodology and periodic projective measurements. In particular, we give conditions for designing such a control law, which can guarantee the desired robustness in the presence of the uncertainties. The sliding mode control method has potential applications to quantum information processing with uncertainties.Comment: 29 pages, 4 figures, accepted by Automatic

    Lyapunov Stability Analysis for Invariant States of Quantum Systems

    Full text link
    In this article, we propose a Lyapunov stability approach to analyze the convergence of the density operator of a quantum system. In contrast to many previously studied convergence analysis methods for invariant density operators which use weak convergence, in this article we analyze the convergence of density operators by considering the set of density operators as a subset of Banach space. We show that the set of invariant density operators is both closed and convex, which implies the impossibility of having multiple isolated invariant density operators. We then show how to analyze the stability of this set via a candidate Lyapunov operator.Comment: A version of this paper has been accepted at 56th IEEE Conference on Decision and Control 201

    Models and Feedback Stabilization of Open Quantum Systems

    Full text link
    At the quantum level, feedback-loops have to take into account measurement back-action. We present here the structure of the Markovian models including such back-action and sketch two stabilization methods: measurement-based feedback where an open quantum system is stabilized by a classical controller; coherent or autonomous feedback where a quantum system is stabilized by a quantum controller with decoherence (reservoir engineering). We begin to explain these models and methods for the photon box experiments realized in the group of Serge Haroche (Nobel Prize 2012). We present then these models and methods for general open quantum systems.Comment: Extended version of the paper attached to an invited conference for the International Congress of Mathematicians in Seoul, August 13 - 21, 201

    A discrete invitation to quantum filtering and feedback control

    Get PDF
    The engineering and control of devices at the quantum-mechanical level--such as those consisting of small numbers of atoms and photons--is a delicate business. The fundamental uncertainty that is inherently present at this scale manifests itself in the unavoidable presence of noise, making this a novel field of application for stochastic estimation and control theory. In this expository paper we demonstrate estimation and feedback control of quantum mechanical systems in what is essentially a noncommutative version of the binomial model that is popular in mathematical finance. The model is extremely rich and allows a full development of the theory, while remaining completely within the setting of finite-dimensional Hilbert spaces (thus avoiding the technical complications of the continuous theory). We introduce discretized models of an atom in interaction with the electromagnetic field, obtain filtering equations for photon counting and homodyne detection, and solve a stochastic control problem using dynamic programming and Lyapunov function methods.Comment: 76 pages, 12 figures. A PDF file with high resolution figures can be found at http://minty.caltech.edu/papers.ph
    • …
    corecore