90 research outputs found

    Singular Switched Systems in Discrete Time: Solvability, Observability, and Reachability Notions

    Get PDF
    Discrete-time singular (switched) systems, also known as(switched) difference-algebraic equations and discrete-time (switched)descriptor systems, have in general three solvability issues:inconsistent initial values, nonexistence ornonuniqueness of solutions, and noncausalities, which are generallynot desired in applications. To deal with those issues, newsolvability notions are proposed in the study, and the correspondingnecessary and sufficient conditions have been derived with the help of(strictly) index-1 notions. Furthermore, surrogate (switched)systems--ordinary (switched) systems that have equivalentbehavior--have also been established for solvable systems. Byutilizing those surrogate systems, fundamental analysis includingobservability, determinability, reachability, and controllability has also beencharacterized for singular linear (switched) systems. The solvabilitystudy has been extended to singular nonlinear (switched) systems, andmoreover, Lyapunov and incremental stability analyses have beenderived via single and switched Lyapunov function approaches

    Efficient positive-real balanced truncation of symmetric systems via cross-riccati equations

    Get PDF
    We present a highly efficient approach for realizing a positive-real balanced truncation (PRBT) of symmetric systems. The solution of a pair of dual algebraic Riccati equations in conventional PRBT, whose cost constrains practical large-scale deployment, is reduced to the solution of one cross-Riccati equation (XRE). The cross-Riccatian nature of the solution then allows a simple construction of PRBT projection matrices, using a Schur decomposition, without actual balancing. An invariant subspace method and a modified quadratic alternating-direction-implicit iteration scheme are proposed to efficiently solve the XRE. A low-rank variant of the latter is shown to offer a remarkably fast PRBT speed over the conventional implementations. The XRE-based framework can be applied to a large class of linear passive networks, and its effectiveness is demonstrated through numerical examples. © 2008 IEEE.published_or_final_versio

    A geometric framework for constraints and data:from linear systems to convex processes

    Get PDF
    In part one of this thesis we develop the theory of analyis of convex processes. The results of this development can be directly applied to the analysis of discrete time, linear, time-invariant mathematical systems with conic constraints. Such constraints arise from physical properties of natural phenomena, and hence it is important that these are considered in the mathematical models thereof. In part two we focus determining whether a system has a given system theoretic property on the basis of measured data. For this, we develop the informativity framework, which allows us to consider and resolve a large number of such problems

    An efficient projector-based passivity test for descriptor systems

    Get PDF
    An efficient passivity test based on canonical projector techniques is proposed for descriptor systems (DSs) widely encountered in circuit and system modeling. The test features a natural flow that first evaluates the index of a DS, followed by possible decoupling into its proper and improper subsystems. Explicit state-space formulations for respective subsystems are derived to facilitate further processing such as model order reduction and/or passivity enforcement. Efficient projector construction and a fast generalized Hamiltonian test for the proper-part passivity are also elaborated. Numerical examples then confirm the superiority of the proposed method over existing passivity tests for DSs based on linear matrix inequalities or skew-Hamiltonian/Hamiltonian matrix pencils. © 2010 IEEE.published_or_final_versio

    Fault-tolerant Stochastic Distributed Systems

    Get PDF
    The present doctoral thesis discusses the design of fault-tolerant distributed systems, placing emphasis in addressing the case where the actions of the nodes or their interactions are stochastic. The main objective is to detect and identify faults to improve the resilience of distributed systems to crash-type faults, as well as detecting the presence of malicious nodes in pursuit of exploiting the network. The proposed analysis considers malicious agents and computational solutions to detect faults. Crash-type faults, where the affected component ceases to perform its task, are tackled in this thesis by introducing stochastic decisions in deterministic distributed algorithms. Prime importance is placed on providing guarantees and rates of convergence for the steady-state solution. The scenarios of a social network (state-dependent example) and consensus (time- dependent example) are addressed, proving convergence. The proposed algorithms are capable of dealing with packet drops, delays, medium access competition, and, in particular, nodes failing and/or losing network connectivity. The concept of Set-Valued Observers (SVOs) is used as a tool to detect faults in a worst-case scenario, i.e., when a malicious agent can select the most unfavorable sequence of communi- cations and inject a signal of arbitrary magnitude. For other types of faults, it is introduced the concept of Stochastic Set-Valued Observers (SSVOs) which produce a confidence set where the state is known to belong with at least a pre-specified probability. It is shown how, for an algorithm of consensus, it is possible to exploit the structure of the problem to reduce the computational complexity of the solution. The main result allows discarding interactions in the model that do not contribute to the produced estimates. The main drawback of using classical SVOs for fault detection is their computational burden. By resorting to a left-coprime factorization for Linear Parameter-Varying (LPV) systems, it is shown how to reduce the computational complexity. By appropriately selecting the factorization, it is possible to consider detectable systems (i.e., unobservable systems where the unobservable component is stable). Such a result plays a key role in the domain of Cyber-Physical Systems (CPSs). These techniques are complemented with Event- and Self-triggered sampling strategies that enable fewer sensor updates. Moreover, the same triggering mechanisms can be used to make decisions of when to run the SVO routine or resort to over-approximations that temporarily compromise accuracy to gain in performance but maintaining the convergence characteristics of the set-valued estimates. A less stringent requirement for network resources that is vital to guarantee the applicability of SVO-based fault detection in the domain of Networked Control Systems (NCSs)

    Interpolation Based Parametric Model Order Reduction

    Get PDF
    In this thesis, we consider model order reduction of parameter-dependent large-scale dynamical systems. The objective is to develop a methodology to reduce the order of the model and simultaneously preserve the dependence of the model on parameters. We use the balanced truncation method together with spline interpolation to solve the problem. The core of this method is to interpolate the reduced transfer function, based on the pre-computed transfer function at a sample in the parameter domain. Linear splines and cubic splines are employed here. The use of the latter, as expected, reduces the error of the method. The combination is proven to inherit the advantages of balanced truncation such as stability preservation and, based on a novel bound for the infinity norm of the matrix inverse, the derivation of error bounds. Model order reduction can be formulated in the projection framework. In the case of a parameter-dependent system, the projection subspace also depends on parameters. One cannot compute this parameter-dependent projection subspace, but has to approximate it by interpolation based on a set of pre-computed subspaces. It turns out that this is the problem of interpolation on Grassmann manifolds. The interpolation process is actually performed on tangent spaces to the underlying manifold. To do that, one has to invoke the exponential and logarithmic mappings which involve some singular value decompositions. The whole procedure is then divided into the offline and online stage. The computation time in the online stage is a crucial point. By investigating the formulation of exponential and logarithmic mappings and analyzing the structure of sums of singular value decompositions, we succeed to reduce the computational complexity of the online stage and therefore enable the use of this algorithm in real time
    corecore