34 research outputs found

    The Multivariable Parabola Criterion for Robust Controller Synthesis: A Riccati Equation Approach

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57873/1/TheMultivariableParabolaCriterionforRobustControllerSynthesisARiccatiEquationApproach.pd

    Robust control design with real parameter uncertainty using absolute stability theory

    Get PDF
    The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds

    System analysis via integral quadratic constraints

    Full text link

    In-Silico Proportional-Integral Moment Control of Stochastic Gene Expression

    Full text link
    The problem of controlling the mean and the variance of a species of interest in a simple gene expression is addressed. It is shown that the protein mean level can be globally and robustly tracked to any desired value using a simple PI controller that satisfies certain sufficient conditions. Controlling both the mean and variance however requires an additional control input, e.g. the mRNA degradation rate, and local robust tracking of mean and variance is proved to be achievable using multivariable PI control, provided that the reference point satisfies necessary conditions imposed by the system. Even more importantly, it is shown that there exist PI controllers that locally, robustly and simultaneously stabilize all the equilibrium points inside the admissible region. The results are then extended to the mean control of a gene expression with protein dimerization. It is shown that the moment closure problem can be circumvented without invoking any moment closure technique. Local stabilization and convergence of the average dimer population to any desired reference value is ensured using a pure integral control law. Explicit bounds on the controller gain are provided and shown to be valid for any reference value. As a byproduct, an explicit upper-bound of the variance of the monomer species, acting on the system as unknown input due to the moment openness, is obtained. The results are illustrated by simulation.Comment: 28 pages; 9 Figures. arXiv admin note: substantial text overlap with arXiv:1207.4766, arXiv:1307.644

    From classical absolute stability tests towards a comprehensive robustness analysis

    Get PDF
    In this thesis, we are concerned with the stability and performance analysis of feedback interconnections comprising a linear (time-invariant) system and an uncertain component subject to external disturbances. Building on the framework of integral quadratic constraints (IQCs), we aim at verifying stability of the interconnection using only coarse information about the input-output behavior of the uncertainty

    High Performance, Robust Control of Flexible Space Structures: MSFC Center Director's Discretionary Fund

    Get PDF
    Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures

    Convex Identifcation of Stable Dynamical Systems

    Get PDF
    This thesis concerns the scalable application of convex optimization to data-driven modeling of dynamical systems, termed system identi cation in the control community. Two problems commonly arising in system identi cation are model instability (e.g. unreliability of long-term, open-loop predictions), and nonconvexity of quality-of- t criteria, such as simulation error (a.k.a. output error). To address these problems, this thesis presents convex parametrizations of stable dynamical systems, convex quality-of- t criteria, and e cient algorithms to optimize the latter over the former. In particular, this thesis makes extensive use of Lagrangian relaxation, a technique for generating convex approximations to nonconvex optimization problems. Recently, Lagrangian relaxation has been used to approximate simulation error and guarantee nonlinear model stability via semide nite programming (SDP), however, the resulting SDPs have large dimension, limiting their practical utility. The rst contribution of this thesis is a custom interior point algorithm that exploits structure in the problem to signi cantly reduce computational complexity. The new algorithm enables empirical comparisons to established methods including Nonlinear ARX, in which superior generalization to new data is demonstrated. Equipped with this algorithmic machinery, the second contribution of this thesis is the incorporation of model stability constraints into the maximum likelihood framework. Speci - cally, Lagrangian relaxation is combined with the expectation maximization (EM) algorithm to derive tight bounds on the likelihood function, that can be optimized over a convex parametrization of all stable linear dynamical systems. Two di erent formulations are presented, one of which gives higher delity bounds when disturbances (a.k.a. process noise) dominate measurement noise, and vice versa. Finally, identi cation of positive systems is considered. Such systems enjoy substantially simpler stability and performance analysis compared to the general linear time-invariant iv Abstract (LTI) case, and appear frequently in applications where physical constraints imply nonnegativity of the quantities of interest. Lagrangian relaxation is used to derive new convex parametrizations of stable positive systems and quality-of- t criteria, and substantial improvements in accuracy of the identi ed models, compared to existing approaches based on weighted equation error, are demonstrated. Furthermore, the convex parametrizations of stable systems based on linear Lyapunov functions are shown to be amenable to distributed optimization, which is useful for identi cation of large-scale networked dynamical systems

    Robustness analysis of linear time-varying systems with application to aerospace systems

    Get PDF
    In recent years significant effort was put into developing analytical worst-case analysis tools to supplement the Verification \& Validation (V\&V) process of complex industrial applications under perturbation. Progress has been made for parameter varying systems via a systematic extension of the bounded real lemma (BRL) for nominal linear parameter varying (LPV) systems to IQCs. However, finite horizon linear time-varying (LTV) systems gathered little attention. This is surprising given the number of nonlinear engineering problems whose linearized dynamics are time-varying along predefined finite trajectories. This applies to everything from space launchers to paper processing machines, whose inertia changes rapidly as the material is unwound. Fast and reliable analytical tools should greatly benefit the V\&V processes for these applications, which currently rely heavily on computationally expensive simulation-based analysis methods of full nonlinear models. The approach taken in this thesis is to compute the worst-case gain of the interconnection of a finite time horizon LTV system and perturbations. The input/output behavior of the uncertainty is described by integral quadratic constraints (IQC). A condition for the worst-case gain of such an interconnection can be formulated using dissipation theory. This utilizes a parameterized Riccati differential equation, which depends on the chosen IQC multiplier. A nonlinear optimization problem is formulated to minimize the upper bound of the worst-case gain over a set of admissible IQC multipliers. This problem can then be efficiently solved using custom-tailored meta-heuristic (MH) algorithms. One of the developed algorithms is initially benchmarked against non-tailored algorithms, demonstrating its improved performance. A second algorithm's potential application in large industrial problems is shown using the example of a touchdown constraints analysis for an autolanded aircraft as was as an aerodynamic loads analysis for space launcher under perturbation and atmospheric disturbance. By comparing the worst-case LTV analysis results with the results of corresponding nonlinear Monte Carlo simulations, the feasibility of the approach to provide necessary upper bounds is demonstrated. This comparison also highlights the improved computational speed of the proposed LTV approach compared to simulation-based nonlinear analyses
    corecore