841 research outputs found

    Control Strategies for the Fokker-Planck Equation

    Full text link
    Using a projection-based decoupling of the Fokker-Planck equation, control strategies that allow to speed up the convergence to the stationary distribution are investigated. By means of an operator theoretic framework for a bilinear control system, two different feedback control laws are proposed. Projected Riccati and Lyapunov equations are derived and properties of the associated solutions are given. The well-posedness of the closed loop systems is shown and local and global stabilization results, respectively, are obtained. An essential tool in the construction of the controls is the choice of appropriate control shape functions. Results for a two dimensional double well potential illustrate the theoretical findings in a numerical setup

    A global attractor for a fluid--plate interaction model accounting only for longitudinal deformations of the plate

    Full text link
    We study asymptotic dynamics of a coupled system consisting of linearized 3D Navier--Stokes equations in a bounded domain and the classical (nonlinear) elastic plate equation for in-plane motions on a flexible flat part of the boundary. The main peculiarity of the model is the assumption that the transversal displacements of the plate are negligible relative to in-plane displacements. This kind of models arises in the study of blood flows in large arteries. Our main result states the existence of a compact global attractor of finite dimension. We also show that the corresponding linearized system generates exponentially stable C0C_0-semigroup. We do not assume any kind of mechanical damping in the plate component. Thus our results means that dissipation of the energy in the fluid due to viscosity is sufficient to stabilize the system.Comment: 18 page
    corecore