5,382 research outputs found

    Lyapunov Criterion for Stochastic Systems and Its Applications in Distributed Computation

    Get PDF
    This paper presents new sufficient conditions for convergence and asymptotic or exponential stability of a stochastic discrete-time system, under which the constructed Lyapunov function always decreases in expectation along the system's solutions after a finite number of steps, but without necessarily strict decrease at every step, in contrast to the classical stochastic Lyapunov theory. As the first application of this new Lyapunov criterion, we look at the product of any random sequence of stochastic matrices, including those with zero diagonal entries, and obtain sufficient conditions to ensure the product almost surely converges to a matrix with identical rows; we also show that the rate of convergence can be exponential under additional conditions. As the second application, we study a distributed network algorithm for solving linear algebraic equations. We relax existing conditions on the network structures, while still guaranteeing the equations are solved asymptotically.Comment: 14 pages, 1 figur

    Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we introduce a new class of discrete-time neural networks (DNNs) with Markovian jumping parameters as well as mode-dependent mixed time delays (both discrete and distributed time delays). Specifically, the parameters of the DNNs are subject to the switching from one to another at different times according to a Markov chain, and the mixed time delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. We first deal with the stability analysis problem of the addressed neural networks. A special inequality is developed to account for the mixed time delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the stochastic stability. We then turn to the synchronization problem among an array of identical coupled Markovian jumping neural networks with mixed mode-dependent time delays. By utilizing the Lyapunov stability theory and the Kronecker product, it is shown that the addressed synchronization problem is solvable if several LMIs are feasible. Hence, different from the commonly used matrix norm theories (such as the M-matrix method), a unified LMI approach is developed to solve the stability analysis and synchronization problems of the class of neural networks under investigation, where the LMIs can be easily solved by using the available Matlab LMI toolbox. Two numerical examples are presented to illustrate the usefulness and effectiveness of the main results obtained

    Distributed state estimation in sensor networks with randomly occurring nonlinearities subject to time delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 ACM.This article is concerned with a new distributed state estimation problem for a class of dynamical systems in sensor networks. The target plant is described by a set of differential equations disturbed by a Brownian motion and randomly occurring nonlinearities (RONs) subject to time delays. The RONs are investigated here to reflect network-induced randomly occurring regulation of the delayed states on the current ones. Through available measurement output transmitted from the sensors, a distributed state estimator is designed to estimate the states of the target system, where each sensor can communicate with the neighboring sensors according to the given topology by means of a directed graph. The state estimation is carried out in a distributed way and is therefore applicable to online application. By resorting to the Lyapunov functional combined with stochastic analysis techniques, several delay-dependent criteria are established that not only ensure the estimation error to be globally asymptotically stable in the mean square, but also guarantee the existence of the desired estimator gains that can then be explicitly expressed when certain matrix inequalities are solved. A numerical example is given to verify the designed distributed state estimators.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60804028 and 61174136, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Detecting barriers to transport: A review of different techniques

    Full text link
    We review and discuss some different techniques for describing local dispersion properties in fluids. A recent Lagrangian diagnostics, based on the Finite Scale Lyapunov Exponent (FSLE), is presented and compared to the Finite Time Lyapunov Exponent (FTLE), and to the Okubo-Weiss (OW) and Hua-Klein (HK) criteria. We show that the OW and HK are a limiting case of the FTLE, and that the FSLE is the most efficient method for detecting the presence of cross-stream barriers. We illustrate our findings by considering two examples of geophysical interest: a kinematic meandering jet model, and Lagrangian tracers advected by stratospheric circulation.Comment: 15 pages, 9 figures, submitted to Physica

    A detectability criterion and data assimilation for non-linear differential equations

    Full text link
    In this paper we propose a new sequential data assimilation method for non-linear ordinary differential equations with compact state space. The method is designed so that the Lyapunov exponents of the corresponding estimation error dynamics are negative, i.e. the estimation error decays exponentially fast. The latter is shown to be the case for generic regular flow maps if and only if the observation matrix H satisfies detectability conditions: the rank of H must be at least as great as the number of nonnegative Lyapunov exponents of the underlying attractor. Numerical experiments illustrate the exponential convergence of the method and the sharpness of the theory for the case of Lorenz96 and Burgers equations with incomplete and noisy observations
    corecore