517 research outputs found

    Machine Learning-Based Classification of Pulmonary Diseases through Real-Time Lung Sounds

    Get PDF
        The study presents a computer-based automated system that employs machine learning to classify pulmonary diseases using lung sound data collected from hospitals. Denoising techniques, such as discrete wavelet transform and variational mode decomposition, are applied to enhance classifier performance. The system combines cepstral features, such as Mel-frequency cepstrum coefficients and gammatone frequency cepstral coefficients, for classification. Four machine learning classifiers, namely the decision tree, k-nearest neighbor, linear discriminant analysis, and random forest, are compared. Evaluation metrics such as accuracy, recall, specificity, and f1 score are employed. This study includes patients affected by chronic obstructive pulmonary disease, asthma, bronchiectasis, and healthy individuals. The results demonstrate that the random forest classifier outperforms the others, achieving an accuracy of 99.72% along with 100% recall, specificity, and f1 scores. The study suggests that the computer-based system serves as a decision-making tool for classifying pulmonary diseases, especially in resource-limited settings

    Towards using Cough for Respiratory Disease Diagnosis by leveraging Artificial Intelligence: A Survey

    Full text link
    Cough acoustics contain multitudes of vital information about pathomorphological alterations in the respiratory system. Reliable and accurate detection of cough events by investigating the underlying cough latent features and disease diagnosis can play an indispensable role in revitalizing the healthcare practices. The recent application of Artificial Intelligence (AI) and advances of ubiquitous computing for respiratory disease prediction has created an auspicious trend and myriad of future possibilities in the medical domain. In particular, there is an expeditiously emerging trend of Machine learning (ML) and Deep Learning (DL)-based diagnostic algorithms exploiting cough signatures. The enormous body of literature on cough-based AI algorithms demonstrate that these models can play a significant role for detecting the onset of a specific respiratory disease. However, it is pertinent to collect the information from all relevant studies in an exhaustive manner for the medical experts and AI scientists to analyze the decisive role of AI/ML. This survey offers a comprehensive overview of the cough data-driven ML/DL detection and preliminary diagnosis frameworks, along with a detailed list of significant features. We investigate the mechanism that causes cough and the latent cough features of the respiratory modalities. We also analyze the customized cough monitoring application, and their AI-powered recognition algorithms. Challenges and prospective future research directions to develop practical, robust, and ubiquitous solutions are also discussed in detail.Comment: 30 pages, 12 figures, 9 table

    Distinctive features for classification of respiratory sounds between normal and crackles using cepstral coefficients

    Get PDF
    Classification of respiratory sounds between normal and abnormal is very crucial for screening and diagnosis purposes. Lung associated diseases can be detected through this technique. With the advancement of computerized auscultation technology, the adventitious sounds such as crackles can be detected and therefore diagnostic test can be performed earlier. In this paper, Mel-frequency Cepstral Coefficient (MFCC) is used to extract features from normal and crackles respiratory sounds. By using statistical computation such as mean and standard deviation (SD) of cepstral based coefficients it can differentiate between crackles and normal sounds. The result shows that the first three statistical values of SD of coefficients provide distinctive feature between normal and crackles respiratory sounds. Hence, MFCCs can be used as feature extraction method of respiratory sounds to classify between normal and crackles as screening and diagnostic tool

    Multi-time-scale features for accurate respiratory sound classification

    Get PDF
    The COVID-19 pandemic has amplified the urgency of the developments in computer-assisted medicine and, in particular, the need for automated tools supporting the clinical diagnosis and assessment of respiratory symptoms. This need was already clear to the scientific community, which launched an international challenge in 2017 at the International Conference on Biomedical Health Informatics (ICBHI) for the implementation of accurate algorithms for the classification of respiratory sound. In this work, we present a framework for respiratory sound classification based on two different kinds of features: (i) short-term features which summarize sound properties on a time scale of tenths of a second and (ii) long-term features which assess sounds properties on a time scale of seconds. Using the publicly available dataset provided by ICBHI, we cross-validated the classification performance of a neural network model over 6895 respiratory cycles and 126 subjects. The proposed model reached an accuracy of 85% ± 3% and an precision of 80% ± 8%, which compare well with the body of literature. The robustness of the predictions was assessed by comparison with state-of-the-art machine learning tools, such as the support vector machine, Random Forest and deep neural networks. The model presented here is therefore suitable for large-scale applications and for adoption in clinical practice. Finally, an interesting observation is that both short-term and long-term features are necessary for accurate classification, which could be the subject of future studies related to its clinical interpretation

    Multi-Time-Scale Features for Accurate Respiratory Sound Classification

    Get PDF
    The COVID-19 pandemic has amplified the urgency of the developments in computer-assisted medicine and, in particular, the need for automated tools supporting the clinical diagnosis and assessment of respiratory symptoms. This need was already clear to the scientific community, which launched an international challenge in 2017 at the International Conference on Biomedical Health Informatics (ICBHI) for the implementation of accurate algorithms for the classification of respiratory sound. In this work, we present a framework for respiratory sound classification based on two different kinds of features: (i) short-term features which summarize sound properties on a time scale of tenths of a second and (ii) long-term features which assess sounds properties on a time scale of seconds. Using the publicly available dataset provided by ICBHI, we cross-validated the classification performance of a neural network model over 6895 respiratory cycles and 126 subjects. The proposed model reached an accuracy of 85%±3% and an precision of 80%±8%, which compare well with the body of literature. The robustness of the predictions was assessed by comparison with state-of-the-art machine learning tools, such as the support vector machine, Random Forest and deep neural networks. The model presented here is therefore suitable for large-scale applications and for adoption in clinical practice. Finally, an interesting observation is that both short-term and long-term features are necessary for accurate classification, which could be the subject of future studies related to its clinical interpretation

    2D respiratory sound analysis to detect lung abnormalities

    Get PDF
    In this paper, we analyze deep visual features from 2D data representation(s) of the respiratory sound to detect evidence of lung abnormalities. The primary motivation behind this is that visual cues are more important in decision-making than raw data (lung sound). Early detection and prompt treatments are essential for any future possible respiratory disorders, and respiratory sound is proven to be one of the biomarkers. In contrast to state-of-the-art approaches, we aim at understanding/analyzing visual features using our Convolutional Neural Networks (CNN) tailored Deep Learning Models, where we consider all possible 2D data such as Spectrogram, Mel-frequency Cepstral Coefficients (MFCC), spectral centroid, and spectral roll-off. In our experiments, using the publicly available respiratory sound database named ICBHI 2017 (5.5 hours of recordings containing 6898 respiratory cycles from 126 subjects), we received the highest performance with the area under the curve of 0.79 from Spectrogram as opposed to 0.48 AUC from the raw data from a pre-trained deep learning model: VGG16. We also used machine learning algorithms using reliable data to improve Our study proved that 2D data representation could help better understand/analyze lung abnormalities as compared to 1D data. Our findings are also contrasted with those of earlier studies. For purposes of generality, we used the MFCC of neutrinos to determine if picture data or raw data produced superior results

    Respiratory Sound Analysis for the Evidence of Lung Health

    Get PDF
    Significant changes have been made on audio-based technologies over years in several different fields along with healthcare industry. Analysis of Lung sounds is a potential source of noninvasive, quantitative information along with additional objective on the status of the pulmonary system. To do that medical professionals listen to sounds heard over the chest wall at different positions with a stethoscope which is known as auscultation and is important in diagnosing respiratory diseases. At times, possibility of inaccurate interpretation of respiratory sounds happens because of clinician’s lack of considerable expertise or sometimes trainees such as interns and residents misidentify respiratory sounds. We have built a tool to distinguish healthy respiratory sound from non-healthy ones that come from respiratory infection carrying patients. The audio clips were characterized using Linear Predictive Cepstral Coefficient (LPCC)-based features and the highest possible accuracy of 99.22% was obtained with a Multi-Layer Perceptron (MLP)- based classifier on the publicly available ICBHI17 respiratory sounds dataset [1] of size 6800+ clips. The system also outperformed established works in literature and other machine learning techniques. In future we will try to use larger dataset with other acoustic techniques along with deep learning-based approaches and try to identify the nature and severity of infection using respiratory sounds

    NRC-Net: Automated noise robust cardio net for detecting valvular cardiac diseases using optimum transformation method with heart sound signals

    Full text link
    Cardiovascular diseases (CVDs) can be effectively treated when detected early, reducing mortality rates significantly. Traditionally, phonocardiogram (PCG) signals have been utilized for detecting cardiovascular disease due to their cost-effectiveness and simplicity. Nevertheless, various environmental and physiological noises frequently affect the PCG signals, compromising their essential distinctive characteristics. The prevalence of this issue in overcrowded and resource-constrained hospitals can compromise the accuracy of medical diagnoses. Therefore, this study aims to discover the optimal transformation method for detecting CVDs using noisy heart sound signals and propose a noise robust network to improve the CVDs classification performance.For the identification of the optimal transformation method for noisy heart sound data mel-frequency cepstral coefficients (MFCCs), short-time Fourier transform (STFT), constant-Q nonstationary Gabor transform (CQT) and continuous wavelet transform (CWT) has been used with VGG16. Furthermore, we propose a novel convolutional recurrent neural network (CRNN) architecture called noise robust cardio net (NRC-Net), which is a lightweight model to classify mitral regurgitation, aortic stenosis, mitral stenosis, mitral valve prolapse, and normal heart sounds using PCG signals contaminated with respiratory and random noises. An attention block is included to extract important temporal and spatial features from the noisy corrupted heart sound.The results of this study indicate that,CWT is the optimal transformation method for noisy heart sound signals. When evaluated on the GitHub heart sound dataset, CWT demonstrates an accuracy of 95.69% for VGG16, which is 1.95% better than the second-best CQT transformation technique. Moreover, our proposed NRC-Net with CWT obtained an accuracy of 97.4%, which is 1.71% higher than the VGG16
    • …
    corecore