8,540 research outputs found

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed

    An Optimized Recursive General Regression Neural Network Oracle for the Prediction and Diagnosis of Diabetes

    Get PDF
    Diabetes is a serious, chronic disease that has been seeing a rise in the number of cases and prevalence over the past few decades. It can lead to serious complications and can increase the overall risk of dying prematurely. Data-oriented prediction models have become effective tools that help medical decision-making and diagnoses in which the use of machine learning in medicine has increased substantially. This research introduces the Recursive General Regression Neural Network Oracle (R-GRNN Oracle) and is applied on the Pima Indians Diabetes dataset for the prediction and diagnosis of diabetes. The R-GRNN Oracle (Bani-Hani, 2017) is an enhancement to the GRNN Oracle developed by Masters et al. in 1998, in which the recursive model is created of two oracles: one within the other. Several classifiers, along with the R-GRNN Oracle and the GRNN Oracle, are applied to the dataset, they are: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Probabilistic Neural Network (PNN), Gaussian NaEF;ve Bayes (GNB), K-Nearest Neighbor (KNN), and Random Forest (RF). Genetic Algorithm (GA) was used for feature selection as well as the hyperparameter optimization of SVM and MLP, and Grid Search (GS) was used to optimize the hyperparameters of KNN and RF. The performance metrics accuracy, AUC, sensitivity, and specificity were recorded for each classifier. The R-GRNN Oracle was able to achieve the highest accuracy, AUC, and sensitivity (81.14%, 86.03%, and 63.80%, respectively), while the optimized MLP had the highest specificity (89.71%)
    • …
    corecore