57 research outputs found

    Semantic Segmentation of Pathological Lung Tissue with Dilated Fully Convolutional Networks

    Full text link
    Early and accurate diagnosis of interstitial lung diseases (ILDs) is crucial for making treatment decisions, but can be challenging even for experienced radiologists. The diagnostic procedure is based on the detection and recognition of the different ILD pathologies in thoracic CT scans, yet their manifestation often appears similar. In this study, we propose the use of a deep purely convolutional neural network for the semantic segmentation of ILD patterns, as the basic component of a computer aided diagnosis (CAD) system for ILDs. The proposed CNN, which consists of convolutional layers with dilated filters, takes as input a lung CT image of arbitrary size and outputs the corresponding label map. We trained and tested the network on a dataset of 172 sparsely annotated CT scans, within a cross-validation scheme. The training was performed in an end-to-end and semi-supervised fashion, utilizing both labeled and non-labeled image regions. The experimental results show significant performance improvement with respect to the state of the art

    Lung Pattern Analysis using Artificial Intelligence for the Diagnosis Support of Interstitial Lung Diseases

    Get PDF
    Interstitial lung diseases (ILDs) is a group of more than 200 chronic lung disorders characterized by inflammation and scarring of the lung tissue that leads to respiratory failure. Although ILD is a heterogeneous group of histologically distinct diseases, most of them exhibit similar clinical presentations and their diagnosis often presents a diagnostic dilemma. Early diagnosis is crucial for making treatment decisions, while misdiagnosis may lead to life-threatening complications. If a final diagnosis cannot be reached with the high resolution computed tomography scan, additional invasive procedures are required (e.g. bronchoalveolar lavage, surgical biopsy). The aim of this PhD thesis was to investigate the components of a computational system that will assist radiologists with the diagnosis of ILDs, while avoiding the dangerous, expensive and time-consuming invasive biopsies. The appropriate interpretation of the available radiological data combined with clinical/biochemical information can provide a reliable diagnosis, able to improve the diagnostic accuracy of the radiologists. In this thesis, we introduce two convolutional neural networks particularly designed for ILDs and a training scheme that employs knowledge transfer from the similar domain of general texture classification for performance enhancement. Moreover, we investigate the clinical relevance of breathing information for disease classification. The breathing information is quantified as a deformation field between inhale-exhale lung images using a novel 3D convolutional neural network for medical image registration. Finally, we design and evaluate the final end-to-end computational system for ILD classification using lung anatomy segmentation algorithms from the literature and the proposed ILD quantification neural networks. Deep learning approaches have been mostly investigated for all the aforementioned steps, while the results demonstrated their potential in analyzing lung images

    Quantitative CT analysis in ILD and use of artificial intelligence on imaging of ILD

    Get PDF
    Advances in computer technology over the past decade, particularly in the field of medical image analysis, have permitted the identification, characterisation and quantitation of abnormalities that can be used to diagnose disease or determine disease severity. On CT imaging performed in patients with ILD, deep-learning computer algorithms now demonstrate comparable performance with trained observers in the identification of a UIP pattern, which is associated with a poor prognosis in several fibrosing ILDs. Computer tools that quantify individual voxel-level CT features have also come of age and can predict mortality with greater power than visual CT analysis scores. As these tools become more established, they have the potential to improve the sensitivity with which minor degrees of disease progression are identified. Currently, PFTs are the gold standard measure used to assess clinical deterioration. However, the variation associated with pulmonary function measurements may mask the presence of small but genuine functional decline, which in the future could be confirmed by computer tools. The current chapter will describe the latest advances in quantitative CT analysis and deep learning as related to ILDs and suggest potential future directions for this rapidly advancing field

    LUNG PATTERN CLASSIFICATION VIA DCNN

    Get PDF
    Interstitial lung disease (ILD) causes pulmonary fibrosis. The correct classification of ILD plays a crucial role in the diagnosis and treatment process. In this research work, we disclose a lung nodules recognition method based on a deep convolutional neural network (DCNN) and global features, which can be used for computer-aided diagnosis (CAD) of global features of lung nodules. Firstly, a DCNN is constructed based on the characteristics and complexity of lung computerized tomography (CT) images. Then discussed the effects of different iterations on the recognition results and influence of different model structures on the global features of lung nodules. We also improved the convolution kernel size, feature dimension, and network depth. Finally, the effects of different pooling methods, activation functions and training algorithms on the performance of DCNN were analyzed from the network optimization dimension. The experimental results verify the feasibility of the proposed DCNN for CAD of global features of lung nodules. Selecting appropriate model parameters and model structure and using the elastic momentum training method can achieve good recognition results

    Multiclass Segmentation of Pulmonary Diseases using Convolutional Neural Network

    Get PDF
    Pulmonary disease has affected tens of millions of people in the world. This disease has also become the cause of death of millions of its sufferers every year. In addition, lung disease has also become the cause of other respiratory complications, which also causes the death of the sufferer. The diagnosis of pulmonary diseases through medical imaging is a significant challenge in computer vision and medical image processing. The difficulty is due to the wide variety in infected areas' shape, dimension, and location. Another challenge is to differentiate one lung disease from the other. Discriminating pulmonary diseases is a notable concern in the diagnosis of pulmonary disease. We have adopted the deep learning convolutional neural network in this study to address these challenges. Seven models were constructed using the Mask Region-based Convolutional Neural Network (Mask-RCNN) architecture to detect and segment infected areas within the lung region from CT scan imagery. The evaluation results show that the best model obtained scores of 91.98%, 85.25%, and 93.75% for DSC, MIoU, and mAP, respectively. The segmentation results are then visualized
    • …
    corecore