125 research outputs found

    VGG19+CNN: Deep Learning-Based Lung Cancer Classification with Meta-Heuristic Feature Selection Methodology

    Get PDF
    Lung illnesses are lung-affecting illnesses that harm the respiratory mechanism. Lung cancer is one of the major causes of death in humans internationally. Advance diagnosis could optimise survivability amongst humans. This remains feasible to systematise or reinforce the radiologist for cancer prognosis. PET and CT scanned images can be used for lung cancer detection. On the whole, the CT scan exhibits importance on the whole and functions as a comprehensive operation in former cancer prognosis. Thus, to subdue specific faults in choosing the feature and optimise classification, this study employs a new revolutionary algorithm called the Accelerated Wrapper-based Binary Artificial Bee Colony algorithm (AWBABCA) for effectual feature selection and VGG19+CNN for classifying cancer phases. The morphological features will be extracted out of the pre-processed image; next, the feature or nodule related to the lung that possesses a significant impact on incurring cancer will be chosen, and for this intention, herein AWBABCA has been employed. The chosen features will be utilised for cancer classification, facilitating a great level of strength and precision. Using the lung dataset to do an experimental evaluation shows that the proposed classifier got the best accuracy, precision, recall, and f1-score

    Full-resolution Lung Nodule Segmentation from Chest X-ray Images using Residual Encoder-Decoder Networks

    Full text link
    Lung cancer is the leading cause of cancer death and early diagnosis is associated with a positive prognosis. Chest X-ray (CXR) provides an inexpensive imaging mode for lung cancer diagnosis. Suspicious nodules are difficult to distinguish from vascular and bone structures using CXR. Computer vision has previously been proposed to assist human radiologists in this task, however, leading studies use down-sampled images and computationally expensive methods with unproven generalization. Instead, this study localizes lung nodules using efficient encoder-decoder neural networks that process full resolution images to avoid any signal loss resulting from down-sampling. Encoder-decoder networks are trained and tested using the JSRT lung nodule dataset. The networks are used to localize lung nodules from an independent external CXR dataset. Sensitivity and false positive rates are measured using an automated framework to eliminate any observer subjectivity. These experiments allow for the determination of the optimal network depth, image resolution and pre-processing pipeline for generalized lung nodule localization. We find that nodule localization is influenced by subtlety, with more subtle nodules being detected in earlier training epochs. Therefore, we propose a novel self-ensemble model from three consecutive epochs centered on the validation optimum. This ensemble achieved a sensitivity of 85% in 10-fold internal testing with false positives of 8 per image. A sensitivity of 81% is achieved at a false positive rate of 6 following morphological false positive reduction. This result is comparable to more computationally complex systems based on linear and spatial filtering, but with a sub-second inference time that is faster than other methods. The proposed algorithm achieved excellent generalization results against an external dataset with sensitivity of 77% at a false positive rate of 7.6

    Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward.

    Get PDF
    The recent development in the areas of deep learning and deep convolutional neural networks has significantly progressed and advanced the field of computer vision (CV) and image analysis and understanding. Complex tasks such as classifying and segmenting medical images and localising and recognising objects of interest have become much less challenging. This progress has the potential of accelerating research and deployment of multitudes of medical applications that utilise CV. However, in reality, there are limited practical examples being physically deployed into front-line health facilities. In this paper, we examine the current state of the art in CV as applied to the medical domain. We discuss the main challenges in CV and intelligent data-driven medical applications and suggest future directions to accelerate research, development, and deployment of CV applications in health practices. First, we critically review existing literature in the CV domain that addresses complex vision tasks, including: medical image classification; shape and object recognition from images; and medical segmentation. Second, we present an in-depth discussion of the various challenges that are considered barriers to accelerating research, development, and deployment of intelligent CV methods in real-life medical applications and hospitals. Finally, we conclude by discussing future directions

    Machine learning approaches for lung cancer diagnosis.

    Get PDF
    The enormity of changes and development in the field of medical imaging technology is hard to fathom, as it does not just represent the technique and process of constructing visual representations of the body from inside for medical analysis and to reveal the internal structure of different organs under the skin, but also it provides a noninvasive way for diagnosis of various disease and suggest an efficient ways to treat them. While data surrounding all of our lives are stored and collected to be ready for analysis by data scientists, medical images are considered a rich source that could provide us with a huge amount of data, that could not be read easily by physicians and radiologists, with valuable information that could be used in smart ways to discover new knowledge from these vast quantities of data. Therefore, the design of computer-aided diagnostic (CAD) system, that can be approved for use in clinical practice that aid radiologists in diagnosis and detecting potential abnormalities, is of a great importance. This dissertation deals with the development of a CAD system for lung cancer diagnosis, which is the second most common cancer in men after prostate cancer and in women after breast cancer. Moreover, lung cancer is considered the leading cause of cancer death among both genders in USA. Recently, the number of lung cancer patients has increased dramatically worldwide and its early detection doubles a patient’s chance of survival. Histological examination through biopsies is considered the gold standard for final diagnosis of pulmonary nodules. Even though resection of pulmonary nodules is the ideal and most reliable way for diagnosis, there is still a lot of different methods often used just to eliminate the risks associated with the surgical procedure. Lung nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. A pulmonary nodule is the first indication to start diagnosing lung cancer. Lung nodules can be benign (normal subjects) or malignant (cancerous subjects). Large (generally defined as greater than 2 cm in diameter) malignant nodules can be easily detected with traditional CT scanning techniques. However, the diagnostic options for small indeterminate nodules are limited due to problems associated with accessing small tumors. Therefore, additional diagnostic and imaging techniques which depends on the nodules’ shape and appearance are needed. The ultimate goal of this dissertation is to develop a fast noninvasive diagnostic system that can enhance the accuracy measures of early lung cancer diagnosis based on the well-known hypotheses that malignant nodules have different shape and appearance than benign nodules, because of the high growth rate of the malignant nodules. The proposed methodologies introduces new shape and appearance features which can distinguish between benign and malignant nodules. To achieve this goal a CAD system is implemented and validated using different datasets. This CAD system uses two different types of features integrated together to be able to give a full description to the pulmonary nodule. These two types are appearance features and shape features. For the appearance features different texture appearance descriptors are developed, namely the 3D histogram of oriented gradient, 3D spherical sector isosurface histogram of oriented gradient, 3D adjusted local binary pattern, 3D resolved ambiguity local binary pattern, multi-view analytical local binary pattern, and Markov Gibbs random field. Each one of these descriptors gives a good description for the nodule texture and the level of its signal homogeneity which is a distinguishable feature between benign and malignant nodules. For the shape features multi-view peripheral sum curvature scale space, spherical harmonics expansions, and different group of fundamental geometric features are utilized to describe the nodule shape complexity. Finally, the fusion of different combinations of these features, which is based on two stages is introduced. The first stage generates a primary estimation for every descriptor. Followed by the second stage that consists of an autoencoder with a single layer augmented with a softmax classifier to provide us with the ultimate classification of the nodule. These different combinations of descriptors are combined into different frameworks that are evaluated using different datasets. The first dataset is the Lung Image Database Consortium which is a benchmark publicly available dataset for lung nodule detection and diagnosis. The second dataset is our local acquired computed tomography imaging data that has been collected from the University of Louisville hospital and the research protocol was approved by the Institutional Review Board at the University of Louisville (IRB number 10.0642). These frameworks accuracy was about 94%, which make the proposed frameworks demonstrate promise to be valuable tool for the detection of lung cancer

    Early Diagnosis of Lung Tumors for Extending Patients’ Life Using Deep Neural Networks

    Get PDF
    Funding Information: Funding Statement: This work was funded by the Researchers Supporting Project Number (RSP2023R 509) King Saud University, Riyadh, Saudi Arabia. This work was supported in part by the Higher Education Sprout Project from the Ministry of Education (MOE) and National Science and Technology Council, Taiwan, (109-2628-E-224-001-MY3), and in part by Isuzu Optics Corporation. Dr. Shih-Yu Chen is the corresponding author. Publisher Copyright: © 2023 Tech Science Press. All rights reserved.Peer reviewedPublisher PD

    Optimized deep learning model for early detection and classification of lung cancer on CT images.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Pietermaritzburg.Recently, researchers have shown an increased interest in the early diagnosis and detection of lung cancer using the characteristics of computed tomography (CT) images. The accurate classification of lung cancer assists the physician to know the targeted treatment, reducing mortality, and as a result, supporting human survival. Several studies have been carried out on lung cancer detection using a convolutional neural network (CNN) models. However, it still remains a challenge to improve the model’s performance. Moreover, CNN models have some limitations that affect their performance, including choosing the optimal architecture, selecting suitable model parameters, and picking the best parameter values for weights and bias. To address the problem of selecting the best combination of weights and bias needed for the classification of lung cancer in CT images, this study proposes a hybrid of Ebola optimization search algorithm (EOSA) and the CNN model. We proposed a hybrid deep learning model with preprocessing features for lung cancer classification using publicly accessible Iraq-Oncology Teaching Hospital/National Center for Cancer Diseases (IQ-OTH/NCCD) dataset. The proposed EOSA-CNN hybrid model was trained using 80% of the cases to obtain the optimal configuration, while the remaining 20% was applied for validation. Also, we compared the proposed model with similar five hybrid algorithms and the traditional CNN. The results indicated that EOSA-CNN scored 0.9321 classification accuracy. Furthermore, the result showed that EOSA-CNN achieved a specificity of 0.7941, 0.97951, 0.9328, and sensitivity of 0.9038, 0.13333, 0.9071 for normal, benign, and malignant cases, respectively. This confirmed that the hybrid algorithm provides a good solution for the classification of lung cancer
    • …
    corecore