14 research outputs found

    Artificial Intelligence for the Advancement of Lunar and Planetary Science and Exploration

    Get PDF
    AI-driven methods have potential to minimise manual labour during planetary data processing and aid ongoing missions with real-time data analysis. This white paper focuses on key areas of AI-driven research, the need for open source training data, and the importance of collaboration between academia and industries to advance AI-driven research

    Photocatalyzed hydrogen evolution from water by a composite catalyst of NH2-MIL-125(Ti) and surface nickel(II) species

    Get PDF
    A composite of the metal–organic framework (MOF) NH2-MIL-125(Ti) and molecular and ionic nickel(II) species, catalyzed hydrogen evolution from water under UV light. In 95 v/v¿% aqueous conditions the composite produced hydrogen in quantities two orders of magnitude higher than that of the virgin framework and an order of magnitude greater than that of the molecular catalyst. In a 2 v/v¿% water and acetonitrile mixture, the composite demonstrated a TOF of 28 mol H2 g(Ni)-1 h-1 and remained active for up to 50 h, sustaining catalysis for three times longer and yielding 20-fold the amount of hydrogen. Appraisal of physical mixtures of the MOF and each of the nickel species under identical photocatalytic conditions suggest that similar surface localized light sensitization and proton reduction processes operate in the composite catalyst. Both nickel species contribute to catalytic conversion, although different activation behaviors are observed.Peer ReviewedPostprint (author's final draft

    Subsurface Reflectors Detected by SHARAD Reveal Stratigraphy and Buried Channels over Central Elysium Planitia, Mars

    Get PDF
    The Central Elysium Planitia (CEP) is one of the youngest geological units on Mars and displays evidence of volcanic and fluvial activities on the surface. The origin of the CEP material has long been debated with a range of hypotheses from purely fluvial to solely volcanic origins. This study presents a comprehensive investigation of SHARAD (SHAllow RADar) data to reveal subsurface radar reflectors over the CEP region. Distribution of the detected radar reflectors show possible connections between the CEP and outflow channels, such as Athabasca Valles and Marte Vallis. Analysis of the radar reflectors in the CEP region show six subsurface layers implying multiple depositional and erosional episodes. Two of the layers are found to correspond to two exposed layers of one terraced crater. By measuring the depth accurately of these exposed layers in the derived HiRISE (High Resolution Imaging Scientific Experiment) and CTX (Context Camera) DTMs (Digital Terrain Models) and inverting the dielectric constant combining the layers in radargrams, an interpretation that the filling material contains water ice is favoured

    NASA Video Catalog

    Get PDF
    This issue of the NASA Video Catalog cites video productions listed in the NASA STI database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Subject Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available

    The potential of phosphorus in clinopyroxene as a geospeedometer: examples from mantle xenoliths

    Get PDF
    We investigate the potential to use concentrations and zoning patterns of phosphorus (P) in clinopyroxene as indicators of the rates of igneous and metasomatic processes, comparable to recent applications of P in olivine but applicable to more evolved rocks and lower temperatures of crystallization. Few high-P pyroxenes have been previously reported, and none have been analyzed in detail for the mechanism of P enrichment or the implications for mineral growth kinetics. Here, we report the discovery and characteristics of exotic phosphorus-rich secondary clinopyroxene in glassy pockets and veins in composite mantle xenoliths from the Cima Volcanic Field (California, USA) and the Middle Atlas Mountains (Morocco, West Africa). These glass-bearing xenoliths preserve evidence of melt infiltration events and the contrasting behavior of P in their pyroxene crystals constrains the different rates of reaction and extents of equilibration that characterized infiltration in each setting. We report optical petrography and chemical analysis of glasses and minerals for major elements by electron microprobe microanalyzer and trace elements by laser-ablation Inductively Coupled Plasma Mass Spectrometry. The Cima Volcanic Field specimen shows one end-member behavior, with unzoned P-rich clinopyroxene in a melt pocket. We attribute this occurrence to a slow crystallization process that occurred after the melt temperature reached near-equilibrium with the host rock and during which the P concentration in the melt was buffered by apatite saturation. In the Morocco xenolith, by contrast, clinopyroxene exhibits zonation with P increasing all the way to the rim, in contact with the glass. We ascribe this feature to a rapid growth process in which excess P was incorporated into the growing clinopyroxene from a diffusive boundary layer. We demonstrate quantitative agreement between the enrichment of P and other trace elements and their expected diffusion and partitioning behavior during rapid growth. We suggest that P has not been widely reported in clinopyroxene in large part because it has rarely been looked for and that its analysis offers considerable promise as a kinetic indicator both in xenoliths and volcanic rocks

    The potential of phosphorus in clinopyroxene as a geospeedometer: examples from mantle xenoliths

    Get PDF
    We investigate the potential to use concentrations and zoning patterns of phosphorus (P) in clinopyroxene as indicators of the rates of igneous and metasomatic processes, comparable to recent applications of P in olivine but applicable to more evolved rocks and lower temperatures of crystallization. Few high-P pyroxenes have been previously reported, and none have been analyzed in detail for the mechanism of P enrichment or the implications for mineral growth kinetics. Here, we report the discovery and characteristics of exotic phosphorus-rich secondary clinopyroxene in glassy pockets and veins in composite mantle xenoliths from the Cima Volcanic Field (California, USA) and the Middle Atlas Mountains (Morocco, West Africa). These glass-bearing xenoliths preserve evidence of melt infiltration events and the contrasting behavior of P in their pyroxene crystals constrains the different rates of reaction and extents of equilibration that characterized infiltration in each setting. We report optical petrography and chemical analysis of glasses and minerals for major elements by electron microprobe microanalyzer and trace elements by laser-ablation Inductively Coupled Plasma Mass Spectrometry. The Cima Volcanic Field specimen shows one end-member behavior, with unzoned P-rich clinopyroxene in a melt pocket. We attribute this occurrence to a slow crystallization process that occurred after the melt temperature reached near-equilibrium with the host rock and during which the P concentration in the melt was buffered by apatite saturation. In the Morocco xenolith, by contrast, clinopyroxene exhibits zonation with P increasing all the way to the rim, in contact with the glass. We ascribe this feature to a rapid growth process in which excess P was incorporated into the growing clinopyroxene from a diffusive boundary layer. We demonstrate quantitative agreement between the enrichment of P and other trace elements and their expected diffusion and partitioning behavior during rapid growth. We suggest that P has not been widely reported in clinopyroxene in large part because it has rarely been looked for and that its analysis offers considerable promise as a kinetic indicator both in xenoliths and volcanic rocks

    NASA Publications Guide for Authors

    Get PDF
    This document presents guidelines for use by NASA authors for preparing and publishing their scientific and technical information (STI). Section 1 gives an overview. Section 2 describes each type of report in the NASA STI Report Series and other forms of publications. It also discusses dissemination and safeguarding of STI. Section 3 gives technical, data quality, and dissemination reviews, including the mandatory review via NASA Form 1676, NASA Scientific and Technical Information (STI) Document Availability Authorization (DAA). It also describes handling unlimited and limited/restricted STI. Section 4 provides recommended standards for document format, composition, and organization and element of a typical report. Section 5 presents miscellaneous preparation recommendations. Section 6 discusses two required forms, Standard Form 298 and NF-1676. The guide cites additional sources of information of standards, guidelines, and review and approval requirements

    Transformers for Lunar Extreme Environments: Ensuring Long-Term Operations in Regions of Darkness and Low Temperatures

    Get PDF
    This report shows how solar power could enable robotic operations in permanently shaded regions at lunar poles, to extract water ice and further produce liquid hydrogen and oxygen (LH2/LO2) propellant. The power needs are derived from an Architecture for Human Exploration of Mars based entirely on lunar propellant. The extraction of 10 metric tons of water per day (at 10% water in regolith) requires approx. 0.6 MW thermal power. Additional approx. 2 MW electric power are required to produce 7.5 metric tons of LH2/LO2 propellant per day, as needed by the architecture. To provide power to processing equipment inside Shackleton Crater, optimal locations are determined on the crater rim, from which several reflecting TransFormers (TFs) would redirect sunlight, achieving a combined period of illumination of approx. 99% of the year. A single 40-m diameter reflector could provide up to 1 MW solar power. Inflatable rigidizable tower support structures raise reflectors above ground for better solar exposure. There are trade-offs: e.g., two reflectors at ground level would provide the same combined total illumination as a single tower approx. 100-m tall. Such a TF based on a 100-m tower made with inflatable 2-m beams and 40-m diameter reflectors would be of similar dimensions as an MSL-class rover (approx. 1000 kg, 10 m(exp 3)). A TF-prospector rover combo could be designed and deployed in a Discovery-class mission searching for water. The TransFormers would be nodes of a Lunar Utilities Infrastructure that provides solar power year-round in the proximity of the pole, as well as local data transmission andintermittent direct to earth communications. This infrastructure would be instrumental infacilitating the development of a lunar economy

    High-Speed Photography and Digital Optical Measurement Techniques for Geomaterials: Fundamentals and Applications

    Get PDF
    Geomaterials (i.e. rock, sand, soil and concrete) are increasingly being encountered and used in extreme environments, in terms of the pressure magnitude and the loading rate. Advancing the understanding of the mechanical response of materials to impact loading relies heavily on having suitable high-speed diagnostics. One such diagnostic is high-speed photography, which combined with a variety of digital optical measurement techniques can provide detailed insights into phenomena including fracture, impact, fragmentation and penetration in geological materials. This review begins with a brief history of high-speed imaging. Section 2 discusses of the current state of the art of high-speed cameras, which includes a comparison between charge-coupled device and complementary metal-oxide semiconductor sensors. The application of high-speed photography to geomechanical experiments is summarized in Sect. 3. Section 4 is concerned with digital optical measurement techniques including photoelastic coating, Moiré, caustics, holographic interferometry, particle image velocimetry, digital image correlation and infrared thermography, in combination with high-speed photography to capture transient phenomena. The last section provides a brief summary and discussion of future directions in the field.This work was supported by the Australian Research Council (LE150100058) and Engineering Seed Funding Scheme of Monash University. The first author would like to acknowledge the financial support by the China Scholarship Council

    Final Report for the Development of the NASA Technical Report Server (NTRS)

    Get PDF
    The author performed a variety of research, development and consulting tasks for NASA Langley Research Center in the area of digital libraries (DLs) and supporting technologies, such as the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH). In particular, the development focused on the NASA Technical Report Server (NTRS) and its transition from a distributed searching model to one that uses the OAI-PMH. The Open Archives Initiative (OAI) is an international consortium focused on furthering the interoperability of DLs through the use of "metadata harvesting". The OAI-PMH version of NTRS went into public production on April 28, 2003. Since that time, it has been extremely well received. In addition to providing the NTRS user community with a higher level of service than the previous, distributed searching version of NTRS, it has provided more insight into how the user community uses NTRS in a variety of deployment scenarios. This report details the design, implementation and maintenance of the NTRS. Source code is included in the appendices
    corecore