579 research outputs found
Sol-gel coatings with the fluorescence dye Rhodamine B for optical modification of cotton
The sol-gel method is a versatile tool for the modification and functionalization of textiles. This method can be also used to support the application of dyes on textile materials. This paper is related to the application of the fluorescence dye Rhodamine B together with an industrial sol-gel component. Beside fluorescence spectroscopy, also scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) are used for the investigation of the produced textile samples. The realized fluorescence effects are strongly related to the applied dye concentration and can be drastically enhanced by presence of the applied sol-gel system. By use of sol-gel method also the dry and the wet rubbing fastness can be improved. These results could be the starting point for future development of new fluorescent textile materials
Nanostructured surface finishing and coatings: Functional properties and applications
This review presents current literature on different nanocomposite coatings and surface finishing for textiles, and in particular this study has focused on smart materials, drug-delivery systems, industrial, antifouling and nano/ultrafiltration membrane coatings. Each of these nanostructured coatings shows interesting properties for different fields of application. In this review, particular attention is paid to the synthesis and the consequent physico-chemical characteristics of each coating and, therefore, to the different parameters that influence the substrate deposition process. Several techniques used in the characterization of these surface finishing coatings were also described. In this review the sol–gel method for preparing stimuli-responsive coatings as smart sensor materials is described; polymers and nanoparticles sensitive to pH, temperature, phase, light and biomolecules are also treated; nanomaterials based on phosphorus, borates, hydroxy carbonates and silicones are used and described as flame-retardant coatings; organic/inorganic hybrid sol–gel coatings for industrial applications are illustrated; carbon nanotubes, metallic oxides and polymers are employed for nano/ultrafiltration membranes and antifouling coatings. Research institutes and industries have collaborated in the advancement of nanotechnology by optimizing conversion processes of conventional materials into coatings with new functionalities for intelligent applications
Sol-Gel Assisted Immobilization of Alizarin Red S on Polyester Fabrics for Developing Stimuli-Responsive Wearable Sensors
In the field of stimuli-responsive materials, introducing a pH-sensitive dyestuff onto textile fabrics is a promising approach for the development of wearable sensors. In this paper, the alizarin red S dyestuff bonded with a sol-gel precursor, namely trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane, was used to functionalize polyethylene terephthalate fabrics, a semi-crystalline thermoplastic polyester largely used in the healthcare sector mainly due to its advantages, including mechanical strength, biocompatibility and resistance against abrasion and chemicals. The obtained hybrid halochromic silane-based coating on polyester fabrics was investigated with several chemical characterization techniques. Fourier transform infrared spectroscopy and X-ray Photoelectron Spectroscopy confirmed the immobilization of the dyestuff-based silane matrix onto polyethylene terephthalate samples through self-condensation of hydrolyzed silanols under the curing process. The reversibility and repeatability of pH-sensing properties of treated polyester fabrics in the pH range 2.0-8.0 were confirmed with diffuse reflectance and CIELAB color space characterizations. Polyester fabric functionalized with halochromic silane-based coating shows the durability of halochromic properties conversely to fabric treated with plain alizarin red S, thus highlighting the potentiality of the sol-gel approach in developing durable halochromic coating on synthetic substrates. The developed wearable pH-meter device could find applications as a non-invasive pH sensor for wellness and healthcare fields
Hybrid sol–gel coatings for corrosion mitigation: a critical review
The corrosion process is a major source of metallic material degradation, particularly in aggressive environments, such as marine ones. Corrosion progression affects the service life of a given metallic structure, which may end in structural failure, leakage, product loss and environmental pollution linked to large financial costs. According to NACE, the annual cost of corrosion worldwide was estimated, in 2016, to be around 3%–4% of the world’s gross domestic product. Therefore, the use of methodologies for corrosion mitigation are extremely important. The approaches used can be passive or active. A passive approach is preventive and may be achieved by emplacing a barrier layer, such as a coating that hinders the contact of the metallic substrate with the aggressive environment. An active approach is generally employed when the corrosion is set in. That seeks to reduce the corrosion rate when the protective barrier is already damaged and the aggressive species (i.e., corrosive agents) are in contact with the metallic substrate. In this case, this is more a remediation methodology than a preventive action, such as the use of coatings. The sol-gel synthesis process, over the past few decades, gained remarkable importance in diverse areas of application. Sol–gel allows the combination of inorganic and organic materials in a single-phase and has led to the development of organic–inorganic hybrid (OIH) coatings for several applications, including for corrosion mitigation. This manuscript succinctly reviews the fundamentals of sol–gel concepts and the parameters that influence the processing techniques. The state-of-the-art of the OIH sol–gel coatings reported in the last few years for corrosion protection, are also assessed. Lastly, a brief perspective on the limitations, standing challenges and future perspectives of the field are critically discussed.Program Budget COMPETE—Operational Program Competitiveness and Internationalization—COMPETE
2020, and the Lisbon Regional Operational Program (its FEDER component), and by the budget of FCT Foundation for Science and Technology, I.P, grant number POCI-01-0145-FEDER-031220.The author acknowledges the financial support provided by the project “SolSensors—Development of Advanced Fiber Optic Sensors for Monitoring the Durability of Concrete Structures”, with reference POCI-01-0145-FEDER-031220 and the support of Centro de Química, CQUM, which is financed by national funds through the FCT Foundation for Science and Technology, I.P. under the project UID/QUI/00686/2019
A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, Perspective, and Prospective
In recent years thanks to the Internet of Things (IoT), the demand for the development of miniaturized and wearable sensors has skyrocketed. Among them, novel sensors for wearable medical devices are mostly needed. The aim of this review is to summarize the advancements in this field from current points of view, focusing on sensors embedded into textile fabrics. Indeed, they are portable, lightweight, and the best candidates for monitoring biometric parameters. The possibility of integrating chemical sensors into textiles has opened new markets in smart clothing. Many examples of these systems are represented by color-changing materials due to their capability of altering optical properties, including absorption, reflectance, and scattering, in response to different external stimuli (temperature, humidity, pH, or chemicals). With the goal of smart health monitoring, nanosized sol–gel precursors, bringing coupling agents into their chemical structure, were used to modify halochromic dyestuffs, both minimizing leaching from the treated surfaces and increasing photostability for the development of stimuli-responsive sensors. The literature about the sensing properties of functionalized halochromic azo dyestuffs applied to textile fabrics is reviewed to understand their potential for achieving remote monitoring of health parameters. Finally, challenges and future perspectives are discussed to envisage the developed strategies for the next generation of functionalized halochromic dyestuffs with biocompatible and real-time stimuli-responsive capabilities
Innovation in the Electrophoretic Deposition of TiO2 Using Different Stabilizing Agents and Zeta Potential
Surface engineering is gaining increasing relevance in various industrial sectors and in research, and in this sense, zeta potential measurements, being a physicochemical parameter of interface, are key to linking the functionality of a coating with its application environment. In this work, different stabilizing agents with different chemical structure and electrical charge were used to improve the stability of the TiO2 particles. The influence of the electrophoretic deposition (EPD) parameters (potential and deposition time) and the concentration of chitosan and TiO2 in suspension were studied to find the best deposition performance on the titanium substrate. The composition and structure of the coatings were evaluated by infrared spectroscopies (FT-IR) and scanning electron microscopy (SEM). It was observed that the TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. Corrosion resistance was evaluated by electrochemical polarization curves, indicating a higher corrosion resistance of TiO2 and TiO2-chitosan coatings compared to the pure titanium substrate in a solution of sulfuric acid
The development of a fluorescent optical ammonia gas sensor based on FRET mechanisms embedded in Xerogel Matrices
This thesis contains the development of optical-based planar and fibre waveguide ammonia gas sensor prototypes. The sensing mechanism is based on the change of the fluorescence emission intensities of selected dye pairs caused by ammonia which is due to the Förster resonance energy transfer (FRET) between the dyes.
Chapter 1 introduces the reasons for investigating optical ammonia sensors. It highlights the advantage of fluorescence-based optical sensors and discusses the theoretical basics and sensor platform technologies connected to this topic.
Chapter 2 focuses on the development of an optical planar waveguide ammonia gas sensor, the sensing mechanism of which is based on FRET between coumarin and fluorescein. The dyes were immobilized into an organically modified silicate matrix during polymerizing methyltriethoxysilane with trifluoropropyl-trimethoxysilane on a PMMA substrate. The resulting dye-doped xerogel films were exposed to different gaseous ammonia concentrations. A logarithmic decrease in coumarin fluorescence emission intensity was observed with increasing ammonia concentration. The coumarin/fluorescein composition was optimized in order to obtain the best ammonia sensitivity. Experiments in the gas sensor setup demonstrated a sensitive and reversible response of the xerogel films to gaseous ammonia.
Chapter 3 reports on the development of silica particle impregnated xerogel sensor coatings on PMMA substrates. Fluorescein and rhodamine B labelled mesoporous silica particles were synthesized by post-grafting and co-condensation approaches. The resulting materials exhibited different pore size distributions, particle shapes and sizes. The Förster resonance energy transfer between this dye pair was explored for the different materials by exposure to various concentrations of gaseous ammonia. A logarithmic increase in rhodamine B emission intensity with increasing ammonia concentration was observed for both post-grafted and co-condensed materials. The dye accessibility by ammonia gas in the silica framework was evaluated by the same gas sensor setup reported in Chapter 2. The response to ammonia gas and the recovery with nitrogen gas is explained by comparing the structure properties and dye loading of the materials.
Chapter 4 contains the development an optical fibre waveguide ammonia gas sensor. The sensor performance of a PMMA fibre clad with the FITC and RBITC doped xerogel reported in Chapter 3 was investigated. The results of the preliminary fibre sensor measurements and the suitability of this system for wearable applications are discussed.
Chapter 5 concludes the thesis by highlighting the most important results and discussing possible experiments or procedures for the improvement of the ammonia gas sensor performance
- …
