2,047 research outputs found

    A Smart Browsing System with Colour Image Enhancement for Surveillance Videos

    Get PDF
    Surveillance cameras have been widely installed in large cities to monitor and record human activities for different applications. Since surveillance cameras often record all events 24 hours/day, it necessarily takes huge workforce watching surveillance videos to search for specific targets, thus a system that helps the user quickly look for targets of interest is highly demanded. This paper proposes a smart surveillance video browsing system with colour image enhancement. The basic idea is to collect all of moving objects which carry the most significant information in surveillance videos to construct a corresponding compact video by tuning positions of these moving objects. The compact video rearranges the spatiotemporal coordinates of moving objects to enhance the compression, but the temporal relationships among moving objects are still kept. The compact video can preserve the essential activities involved in the original surveillance video. This paper presents the details of browsing system and the approach to producing the compact video from a source surveillance video. At the end we will get the compact video with high resolution. DOI: 10.17762/ijritcc2321-8169.15038

    High Dynamic Range Adaptive Real-time Smart Camera: an overview of the HDR-ARTiST project

    No full text
    International audienceStandard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor

    Scalable software architecture for on-line multi-camera video processing

    Get PDF
    In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhea

    Embracing Visual Experience and Data Knowledge: Efficient Embedded Memory Design for Big Videos and Deep Learning

    Get PDF
    Energy efficient memory designs are becoming increasingly important, especially for applications related to mobile video technology and machine learning. The growing popularity of smart phones, tablets and other mobile devices has created an exponential demand for video applications in today?s society. When mobile devices display video, the embedded video memory within the device consumes a large amount of the total system power. This issue has created the need to introduce power-quality tradeoff techniques for enabling good quality video output, while simultaneously enabling power consumption reduction. Similarly, power efficiency issues have arisen within the area of machine learning, especially with applications requiring large and fast computation, such as neural networks. Using the accumulated data knowledge from various machine learning applications, there is now the potential to create more intelligent memory with the capability for optimized trade-off between energy efficiency, area overhead, and classification accuracy on the learning systems. In this dissertation, a review of recently completed works involving video and machine learning memories will be covered. Based on the collected results from a variety of different methods, including: subjective trials, discovered data-mining patterns, software simulations, and hardware power and performance tests, the presented memories provide novel ways to significantly enhance power efficiency for future memory devices. An overview of related works, especially the relevant state-of-the-art research, will be referenced for comparison in order to produce memory design methodologies that exhibit optimal quality, low implementation overhead, and maximum power efficiency.National Science FoundationND EPSCoRCenter for Computationally Assisted Science and Technology (CCAST

    ITERL: A Wireless Adaptive System for Efficient Road Lighting

    Get PDF
    This work presents the development and construction of an adaptive street lighting system that improves safety at intersections, which is the result of applying low-power Internet of Things (IoT) techniques to intelligent transportation systems. A set of wireless sensor nodes using the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard with additional internet protocol (IP) connectivity measures both ambient conditions and vehicle transit. These measurements are sent to a coordinator node that collects and passes them to a local controller, which then makes decisions leading to the streetlight being turned on and its illumination level controlled. Streetlights are autonomous, powered by photovoltaic energy, and wirelessly connected, achieving a high degree of energy efficiency. Relevant data are also sent to the highway conservation center, allowing it to maintain up-to-date information for the system, enabling preventive maintenance.Consejería de Fomento y Vivienda Junta de Andalucía G-GI3002 / IDIOFondo Europeo de Desarrollo Regional G-GI3002 / IDI

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Hardware-based smart camera for recovering high dynamic range video from multiple exposures

    No full text
    International audienceIn many applications such as video surveillance or defect detection, the perception of information related to a scene is limited in areas with strong contrasts. The high dynamic range (HDR) capture technique can deal with these limitations. The proposed method has the advantage of automatically selecting multiple exposure times to make outputs more visible than fixed exposure ones. A real-time hardware implementation of the HDR technique that shows more details both in dark and bright areas of a scene is an important line of research. For this purpose, we built a dedicated smart camera that performs both capturing and HDR video processing from three exposures. What is new in our work is shown through the following points: HDR video capture through multiple exposure control, HDR memory management, HDR frame generation, and rep- resentation under a hardware context. Our camera achieves a real-time HDR video output at 60 fps at 1.3 mega- pixels and demonstrates the efficiency of our technique through an experimental result. Applications of this HDR smart camera include the movie industry, the mass-consumer market, military, automotive industry, and sur- veillanc

    Algorithms and methods for video transcoding.

    Get PDF
    Video transcoding is the process of dynamic video adaptation. Dynamic video adaptation can be defined as the process of converting video from one format to another, changing the bit rate, frame rate or resolution of the encoded video, which is mainly necessitated by the end user requirements. H.264 has been the predominantly used video compression standard for the last 15 years. HEVC (High Efficiency Video Coding) is the latest video compression standard finalised in 2013, which is an improvement over H.264 video compression standard. HEVC performs significantly better than H.264 in terms of the Rate-Distortion performance. As H.264 has been widely used in the last decade, a large amount of video content exists in H.264 format. There is a need to convert H.264 video content to HEVC format to achieve better Rate-Distortion performance and to support legacy video formats on newer devices. However, the computational complexity of HEVC encoder is 2-10 times higher than that of H.264 encoder. This makes it necessary to develop low complexity video transcoding algorithms to transcode from H.264 to HEVC format. This research work proposes low complexity algorithms for H.264 to HEVC video transcoding. The proposed algorithms reduce the computational complexity of H.264 to HEVC video transcoding significantly, with negligible loss in Rate-Distortion performance. This work proposes three different video transcoding algorithms. The MV-based mode merge algorithm uses the block mode and MV variances to estimate the split/non-split decision as part of the HEVC block prediction process. The conditional probability-based mode mapping algorithm models HEVC blocks of sizes 16×16 and lower as a function of H.264 block modes, H.264 and HEVC Quantisation Parameters (QP). The motion-compensated MB residual-based mode mapping algorithm makes the split/non-split decision based on content-adaptive classification models. With a combination of the proposed set of algorithms, the computational complexity of the HEVC encoder is reduced by around 60%, with negligible loss in Rate-Distortion performance, outperforming existing state-of-art algorithms by 20-25% in terms of computational complexity. The proposed algorithms can be used in computation-constrained video transcoding applications, to support video format conversion in smart devices, migration of large-scale H.264 video content from host servers to HEVC, cloud computing-based transcoding applications, and also to support high quality videos over bandwidth-constrained networks
    corecore