156 research outputs found

    Vertex-Magic Total Labeling on G-sun Graphs

    Get PDF
    Graph labeling is an immense area of research in mathematics, specifically graph theory. There are many types of graph labelings such as harmonious, magic, and lucky labelings. This paper will focus on magic labelings. Graph theorists are particularly interested in magic labelings because of a simple problem regarding tree graphs introduced in the 1990’s. The problem is still unsolved after almost thirty years. Researchers have studied magic labelings on other graphs in addition to tree graphs. In this paper we will consider vertex-magic labelings on G-sun graphs. We will give vertex-magic total labelings for ladder sun graphs and complete bipartite sun graphs. We will also show when there is no vertex-magic total labeling for other types of G-sun graphs

    On the Graceful Game

    Get PDF
    A graceful labeling of a graph GG with mm edges consists of labeling the vertices of GG with distinct integers from 00 to mm such that, when each edge is assigned as induced label the absolute difference of the labels of its endpoints, all induced edge labels are distinct. Rosa established two well known conjectures: all trees are graceful (1966) and all triangular cacti are graceful (1988). In order to contribute to both conjectures we study graceful labelings in the context of graph games. The Graceful game was introduced by Tuza in 2017 as a two-players game on a connected graph in which the players Alice and Bob take turns labeling the vertices with distinct integers from 0 to mm. Alice's goal is to gracefully label the graph as Bob's goal is to prevent it from happening. In this work, we study winning strategies for Alice and Bob in complete graphs, paths, cycles, complete bipartite graphs, caterpillars, prisms, wheels, helms, webs, gear graphs, hypercubes and some powers of paths

    Topological Additive Numbering of Directed Acyclic Graphs

    Full text link
    We propose to study a problem that arises naturally from both Topological Numbering of Directed Acyclic Graphs, and Additive Coloring (also known as Lucky Labeling). Let DD be a digraph and ff a labeling of its vertices with positive integers; denote by S(v)S(v) the sum of labels over all neighbors of each vertex vv. The labeling ff is called \emph{topological additive numbering} if S(u)<S(v)S(u) < S(v) for each arc (u,v)(u,v) of the digraph. The problem asks to find the minimum number kk for which DD has a topological additive numbering with labels belonging to {1,…,k}\{ 1, \ldots, k \}, denoted by ηt(D)\eta_t(D). We characterize when a digraph has topological additive numberings, give a lower bound for ηt(D)\eta_t(D), and provide an integer programming formulation for our problem, characterizing when its coefficient matrix is totally unimodular. We also present some families for which ηt(D)\eta_t(D) can be computed in polynomial time. Finally, we prove that this problem is \np-Hard even when its input is restricted to planar bipartite digraphs

    Trade-Offs in Distributed Interactive Proofs

    Get PDF
    The study of interactive proofs in the context of distributed network computing is a novel topic, recently introduced by Kol, Oshman, and Saxena [PODC 2018]. In the spirit of sequential interactive proofs theory, we study the power of distributed interactive proofs. This is achieved via a series of results establishing trade-offs between various parameters impacting the power of interactive proofs, including the number of interactions, the certificate size, the communication complexity, and the form of randomness used. Our results also connect distributed interactive proofs with the established field of distributed verification. In general, our results contribute to providing structure to the landscape of distributed interactive proofs
    • …
    corecore