377 research outputs found

    A Study on Performance and Power Efficiency of Dense Non-Volatile Caches in Multi-Core Systems

    Full text link
    In this paper, we present a novel cache design based on Multi-Level Cell Spin-Transfer Torque RAM (MLC STTRAM) that can dynamically adapt the set capacity and associativity to use efficiently the full potential of MLC STTRAM. We exploit the asymmetric nature of the MLC storage scheme to build cache lines featuring heterogeneous performances, that is, half of the cache lines are read-friendly, while the other is write-friendly. Furthermore, we propose to opportunistically deactivate ways in underutilized sets to convert MLC to Single-Level Cell (SLC) mode, which features overall better performance and lifetime. Our ultimate goal is to build a cache architecture that combines the capacity advantages of MLC and performance/energy advantages of SLC. Our experiments show an improvement of 43% in total numbers of conflict misses, 27% in memory access latency, 12% in system performance, and 26% in LLC access energy, with a slight degradation in cache lifetime (about 7%) compared to an SLC cache

    DESTINY: A Comprehensive Tool with 3D and Multi-Level Cell Memory Modeling Capability

    Get PDF
    To enable the design of large capacity memory structures, novel memory technologies such as non-volatile memory (NVM) and novel fabrication approaches, e.g., 3D stacking and multi-level cell (MLC) design have been explored. The existing modeling tools, however, cover only a few memory technologies, technology nodes and fabrication approaches. We present DESTINY, a tool for modeling 2D/3D memories designed using SRAM, resistive RAM (ReRAM), spin transfer torque RAM (STT-RAM), phase change RAM (PCM) and embedded DRAM (eDRAM) and 2D memories designed using spin orbit torque RAM (SOT-RAM), domain wall memory (DWM) and Flash memory. In addition to single-level cell (SLC) designs for all of these memories, DESTINY also supports modeling MLC designs for NVMs. We have extensively validated DESTINY against commercial and research prototypes of these memories. DESTINY is very useful for performing design-space exploration across several dimensions, such as optimizing for a target (e.g., latency, area or energy-delay product) for a given memory technology, choosing the suitable memory technology or fabrication method (i.e., 2D v/s 3D) for a given optimization target, etc. We believe that DESTINY will boost studies of next-generation memory architectures used in systems ranging from mobile devices to extreme-scale supercomputers. The latest source-code of DESTINY is available from the following git repository: https://bitbucket.org/sparsh_mittal/destiny_v2

    Reuse Detector: improving the management of STT-RAM SLLCs

    Get PDF
    Various constraints of Static Random Access Memory (SRAM) are leading to consider new memory technologies as candidates for building on-chip shared last-level caches (SLLCs). Spin-Transfer Torque RAM (STT-RAM) is currently postulated as the prime contender due to its better energy efficiency, smaller die footprint and higher scalability. However, STT-RAM also exhibits some drawbacks, like slow and energy-hungry write operations that need to be mitigated before it can be used in SLLCs for the next generation of computers. In this work, we address these shortcomings by leveraging a new management mechanism for STT-RAM SLLCs. This approach is based on the previous observation that although the stream of references arriving at the SLLC of a Chip MultiProcessor (CMP) exhibits limited temporal locality, it does exhibit reuse locality, i.e. those blocks referenced several times manifest high probability of forthcoming reuse. As such, conventional STT-RAM SLLC management mechanisms, mainly focused on exploiting temporal locality, result in low efficient behavior. In this paper, we employ a cache management mechanism that selects the contents of the SLLC aimed to exploit reuse locality instead of temporal locality. Specifically, our proposal consists in the inclusion of a Reuse Detector (RD) between private cache levels and the STT-RAM SLLC. Its mission is to detect blocks that do not exhibit reuse, in order to avoid their insertion in the SLLC, hence reducing the number of write operations and the energy consumption in the STT-RAM. Our evaluation, using multiprogrammed workloads in quad-core, eight-core and 16-core systems, reveals that our scheme reports on average, energy reductions in the SLLC in the range of 37–30%, additional energy savings in the main memory in the range of 6–8% and performance improvements of 3% (quad-core), 7% (eight-core) and 14% (16-core) compared with an STT-RAM SLLC baseline where no RD is employed. More importantly, our approach outperforms DASCA, the state-of-the-art STT-RAM SLLC management, reporting—depending on the specific scenario and the kind of applications used—SLLC energy savings in the range of 4–11% higher than those of DASCA, delivering higher performance in the range of 1.5–14% and additional improvements in DRAM energy consumption in the range of 2–9% higher than DASCA.Peer ReviewedPostprint (author's final draft
    corecore