1,373 research outputs found

    On Directed Feedback Vertex Set parameterized by treewidth

    Get PDF
    We study the Directed Feedback Vertex Set problem parameterized by the treewidth of the input graph. We prove that unless the Exponential Time Hypothesis fails, the problem cannot be solved in time 2o(tlogt)nO(1)2^{o(t\log t)}\cdot n^{\mathcal{O}(1)} on general directed graphs, where tt is the treewidth of the underlying undirected graph. This is matched by a dynamic programming algorithm with running time 2O(tlogt)nO(1)2^{\mathcal{O}(t\log t)}\cdot n^{\mathcal{O}(1)}. On the other hand, we show that if the input digraph is planar, then the running time can be improved to 2O(t)nO(1)2^{\mathcal{O}(t)}\cdot n^{\mathcal{O}(1)}.Comment: 20

    Incremental 22-Edge-Connectivity in Directed Graphs

    Get PDF
    In this paper, we initiate the study of the dynamic maintenance of 22-edge-connectivity relationships in directed graphs. We present an algorithm that can update the 22-edge-connected blocks of a directed graph with nn vertices through a sequence of mm edge insertions in a total of O(mn)O(mn) time. After each insertion, we can answer the following queries in asymptotically optimal time: (i) Test in constant time if two query vertices vv and ww are 22-edge-connected. Moreover, if vv and ww are not 22-edge-connected, we can produce in constant time a "witness" of this property, by exhibiting an edge that is contained in all paths from vv to ww or in all paths from ww to vv. (ii) Report in O(n)O(n) time all the 22-edge-connected blocks of GG. To the best of our knowledge, this is the first dynamic algorithm for 22-connectivity problems on directed graphs, and it matches the best known bounds for simpler problems, such as incremental transitive closure.Comment: Full version of paper presented at ICALP 201

    Parameterized Algorithms for Directed Maximum Leaf Problems

    Full text link
    We prove that finding a rooted subtree with at least kk leaves in a digraph is a fixed parameter tractable problem. A similar result holds for finding rooted spanning trees with many leaves in digraphs from a wide family L\cal L that includes all strong and acyclic digraphs. This settles completely an open question of Fellows and solves another one for digraphs in L\cal L. Our algorithms are based on the following combinatorial result which can be viewed as a generalization of many results for a `spanning tree with many leaves' in the undirected case, and which is interesting on its own: If a digraph DLD\in \cal L of order nn with minimum in-degree at least 3 contains a rooted spanning tree, then DD contains one with at least (n/2)1/51(n/2)^{1/5}-1 leaves

    Decremental Single-Source Reachability in Planar Digraphs

    Full text link
    In this paper we show a new algorithm for the decremental single-source reachability problem in directed planar graphs. It processes any sequence of edge deletions in O(nlog2nloglogn)O(n\log^2{n}\log\log{n}) total time and explicitly maintains the set of vertices reachable from a fixed source vertex. Hence, if all edges are eventually deleted, the amortized time of processing each edge deletion is only O(log2nloglogn)O(\log^2 n \log \log n), which improves upon a previously known O(n)O(\sqrt{n}) solution. We also show an algorithm for decremental maintenance of strongly connected components in directed planar graphs with the same total update time. These results constitute the first almost optimal (up to polylogarithmic factors) algorithms for both problems. To the best of our knowledge, these are the first dynamic algorithms with polylogarithmic update times on general directed planar graphs for non-trivial reachability-type problems, for which only polynomial bounds are known in general graphs

    Zero forcing in iterated line digraphs

    Full text link
    Zero forcing is a propagation process on a graph, or digraph, defined in linear algebra to provide a bound for the minimum rank problem. Independently, zero forcing was introduced in physics, computer science and network science, areas where line digraphs are frequently used as models. Zero forcing is also related to power domination, a propagation process that models the monitoring of electrical power networks. In this paper we study zero forcing in iterated line digraphs and provide a relationship between zero forcing and power domination in line digraphs. In particular, for regular iterated line digraphs we determine the minimum rank/maximum nullity, zero forcing number and power domination number, and provide constructions to attain them. We conclude that regular iterated line digraphs present optimal minimum rank/maximum nullity, zero forcing number and power domination number, and apply our results to determine those parameters on some families of digraphs often used in applications
    corecore