19,656 research outputs found

    Lower bounds on the obstacle number of graphs

    Full text link
    Given a graph GG, an {\em obstacle representation} of GG is a set of points in the plane representing the vertices of GG, together with a set of connected obstacles such that two vertices of GG are joined by an edge if and only if the corresponding points can be connected by a segment which avoids all obstacles. The {\em obstacle number} of GG is the minimum number of obstacles in an obstacle representation of GG. It is shown that there are graphs on nn vertices with obstacle number at least Ω(n/logn)\Omega({n}/{\log n})

    Bounding and Computing Obstacle Numbers of Graphs

    Get PDF
    An obstacle representation of a graph G consists of a set of pairwise disjoint simply-connected closed regions and a one-to-one mapping of the vertices of G to points such that two vertices are adjacent in G if and only if the line segment connecting the two corresponding points does not intersect any obstacle. The obstacle number of a graph is the smallest number of obstacles in an obstacle representation of the graph in the plane such that all obstacles are simple polygons. It is known that the obstacle number of each n-vertex graph is O(n log n) [Balko, Cibulka, and Valtr, 2018] and that there are n-vertex graphs whose obstacle number is Ω(n/(log log n)²) [Dujmović and Morin, 2015]. We improve this lower bound to Ω(n/log log n) for simple polygons and to Ω(n) for convex polygons. To obtain these stronger bounds, we improve known estimates on the number of n-vertex graphs with bounded obstacle number, solving a conjecture by Dujmović and Morin. We also show that if the drawing of some n-vertex graph is given as part of the input, then for some drawings Ω(n²) obstacles are required to turn them into an obstacle representation of the graph. Our bounds are asymptotically tight in several instances. We complement these combinatorial bounds by two complexity results. First, we show that computing the obstacle number of a graph G is fixed-parameter tractable in the vertex cover number of G. Second, we show that, given a graph G and a simple polygon P, it is NP-hard to decide whether G admits an obstacle representation using P as the only obstacle

    Routing on the Visibility Graph

    Full text link
    We consider the problem of routing on a network in the presence of line segment constraints (i.e., obstacles that edges in our network are not allowed to cross). Let PP be a set of nn points in the plane and let SS be a set of non-crossing line segments whose endpoints are in PP. We present two deterministic 1-local O(1)O(1)-memory routing algorithms that are guaranteed to find a path of at most linear size between any pair of vertices of the \emph{visibility graph} of PP with respect to a set of constraints SS (i.e., the algorithms never look beyond the direct neighbours of the current location and store only a constant amount of additional information). Contrary to {\em all} existing deterministic local routing algorithms, our routing algorithms do not route on a plane subgraph of the visibility graph. Additionally, we provide lower bounds on the routing ratio of any deterministic local routing algorithm on the visibility graph.Comment: An extended abstract of this paper appeared in the proceedings of the 28th International Symposium on Algorithms and Computation (ISAAC 2017). Final version appeared in the Journal of Computational Geometr

    Weak solutions to mean curvature flow respecting obstacles I: the graphical case

    Full text link
    We consider the problem of evolving hypersurfaces by mean curvature flow in the presence of obstacles, that is domains which the flow is not allowed to enter. In this paper, we treat the case of complete graphs and explain how the approach of M. Saez and the second author yields a global weak solution to the original problem for general initial data and onesided obstacles.Comment: updated version with minor corrections and 2 new figure

    Obstacle Numbers of Planar Graphs

    Full text link
    Given finitely many connected polygonal obstacles O1,,OkO_1,\dots,O_k in the plane and a set PP of points in general position and not in any obstacle, the {\em visibility graph} of PP with obstacles O1,,OkO_1,\dots,O_k is the (geometric) graph with vertex set PP, where two vertices are adjacent if the straight line segment joining them intersects no obstacle. The obstacle number of a graph GG is the smallest integer kk such that GG is the visibility graph of a set of points with kk obstacles. If GG is planar, we define the planar obstacle number of GG by further requiring that the visibility graph has no crossing edges (hence that it is a planar geometric drawing of GG). In this paper, we prove that the maximum planar obstacle number of a planar graph of order nn is n3n-3, the maximum being attained (in particular) by maximal bipartite planar graphs. This displays a significant difference with the standard obstacle number, as we prove that the obstacle number of every bipartite planar graph (and more generally in the class PURE-2-DIR of intersection graphs of straight line segments in two directions) of order at least 33 is 11.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Grid-Obstacle Representations with Connections to Staircase Guarding

    Full text link
    In this paper, we study grid-obstacle representations of graphs where we assign grid-points to vertices and define obstacles such that an edge exists if and only if an xyxy-monotone grid path connects the two endpoints without hitting an obstacle or another vertex. It was previously argued that all planar graphs have a grid-obstacle representation in 2D, and all graphs have a grid-obstacle representation in 3D. In this paper, we show that such constructions are possible with significantly smaller grid-size than previously achieved. Then we study the variant where vertices are not blocking, and show that then grid-obstacle representations exist for bipartite graphs. The latter has applications in so-called staircase guarding of orthogonal polygons; using our grid-obstacle representations, we show that staircase guarding is \textsc{NP}-hard in 2D.Comment: To appear in the proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Incremental Sampling-based Algorithms for Optimal Motion Planning

    Full text link
    During the last decade, incremental sampling-based motion planning algorithms, such as the Rapidly-exploring Random Trees (RRTs) have been shown to work well in practice and to possess theoretical guarantees such as probabilistic completeness. However, no theoretical bounds on the quality of the solution obtained by these algorithms have been established so far. The first contribution of this paper is a negative result: it is proven that, under mild technical conditions, the cost of the best path in the RRT converges almost surely to a non-optimal value. Second, a new algorithm is considered, called the Rapidly-exploring Random Graph (RRG), and it is shown that the cost of the best path in the RRG converges to the optimum almost surely. Third, a tree version of RRG is introduced, called the RRT^* algorithm, which preserves the asymptotic optimality of RRG while maintaining a tree structure like RRT. The analysis of the new algorithms hinges on novel connections between sampling-based motion planning algorithms and the theory of random geometric graphs. In terms of computational complexity, it is shown that the number of simple operations required by both the RRG and RRT^* algorithms is asymptotically within a constant factor of that required by RRT.Comment: 20 pages, 10 figures, this manuscript is submitted to the International Journal of Robotics Research, a short version is to appear at the 2010 Robotics: Science and Systems Conference
    corecore