1,480 research outputs found

    Distance colouring without one cycle length

    Get PDF
    We consider distance colourings in graphs of maximum degree at most dd and how excluding one fixed cycle length \ell affects the number of colours required as dd\to\infty. For vertex-colouring and t1t\ge 1, if any two distinct vertices connected by a path of at most tt edges are required to be coloured differently, then a reduction by a logarithmic (in dd) factor against the trivial bound O(dt)O(d^t) can be obtained by excluding an odd cycle length 3t\ell \ge 3t if tt is odd or by excluding an even cycle length 2t+2\ell \ge 2t+2. For edge-colouring and t2t\ge 2, if any two distinct edges connected by a path of fewer than tt edges are required to be coloured differently, then excluding an even cycle length 2t\ell \ge 2t is sufficient for a logarithmic factor reduction. For t2t\ge 2, neither of the above statements are possible for other parity combinations of \ell and tt. These results can be considered extensions of results due to Johansson (1996) and Mahdian (2000), and are related to open problems of Alon and Mohar (2002) and Kaiser and Kang (2014).Comment: 14 pages, 1 figur

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete

    Maximum Δ\Delta-edge-colorable subgraphs of class II graphs

    Full text link
    A graph GG is class II, if its chromatic index is at least Δ+1\Delta+1. Let HH be a maximum Δ\Delta-edge-colorable subgraph of GG. The paper proves best possible lower bounds for E(H)E(G)\frac{|E(H)|}{|E(G)|}, and structural properties of maximum Δ\Delta-edge-colorable subgraphs. It is shown that every set of vertex-disjoint cycles of a class II graph with Δ3\Delta\geq3 can be extended to a maximum Δ\Delta-edge-colorable subgraph. Simple graphs have a maximum Δ\Delta-edge-colorable subgraph such that the complement is a matching. Furthermore, a maximum Δ\Delta-edge-colorable subgraph of a simple graph is always class I.Comment: 13 pages, 2 figures, the proof of the Lemma 1 is correcte

    Bipartite induced density in triangle-free graphs

    Full text link
    We prove that any triangle-free graph on nn vertices with minimum degree at least dd contains a bipartite induced subgraph of minimum degree at least d2/(2n)d^2/(2n). This is sharp up to a logarithmic factor in nn. Relatedly, we show that the fractional chromatic number of any such triangle-free graph is at most the minimum of n/dn/d and (2+o(1))n/logn(2+o(1))\sqrt{n/\log n} as nn\to\infty. This is sharp up to constant factors. Similarly, we show that the list chromatic number of any such triangle-free graph is at most O(min{n,(nlogn)/d})O(\min\{\sqrt{n},(n\log n)/d\}) as nn\to\infty. Relatedly, we also make two conjectures. First, any triangle-free graph on nn vertices has fractional chromatic number at most (2+o(1))n/logn(\sqrt{2}+o(1))\sqrt{n/\log n} as nn\to\infty. Second, any triangle-free graph on nn vertices has list chromatic number at most O(n/logn)O(\sqrt{n/\log n}) as nn\to\infty.Comment: 20 pages; in v2 added note of concurrent work and one reference; in v3 added more notes of ensuing work and a result towards one of the conjectures (for list colouring

    Edge-coloring via fixable subgraphs

    Full text link
    Many graph coloring proofs proceed by showing that a minimal counterexample to the theorem being proved cannot contain certain configurations, and then showing that each graph under consideration contains at least one such configuration; these configurations are called \emph{reducible} for that theorem. (A \emph{configuration} is a subgraph HH, along with specified degrees dG(v)d_G(v) in the original graph GG for each vertex of HH.) We give a general framework for showing that configurations are reducible for edge-coloring. A particular form of reducibility, called \emph{fixability}, can be considered without reference to a containing graph. This has two key benefits: (i) we can now formulate necessary conditions for fixability, and (ii) the problem of fixability is easy for a computer to solve. The necessary condition of \emph{superabundance} is sufficient for multistars and we conjecture that it is sufficient for trees as well, which would generalize the powerful technique of Tashkinov trees. Via computer, we can generate thousands of reducible configurations, but we have short proofs for only a small fraction of these. The computer can write \LaTeX\ code for its proofs, but they are only marginally enlightening and can run thousands of pages long. We give examples of how to use some of these reducible configurations to prove conjectures on edge-coloring for small maximum degree. Our aims in writing this paper are (i) to provide a common context for a variety of reducible configurations for edge-coloring and (ii) to spur development of methods for humans to understand what the computer already knows.Comment: 18 pages, 8 figures; 12-page appendix with 39 figure

    Pseudo-random graphs

    Full text link
    Random graphs have proven to be one of the most important and fruitful concepts in modern Combinatorics and Theoretical Computer Science. Besides being a fascinating study subject for their own sake, they serve as essential instruments in proving an enormous number of combinatorial statements, making their role quite hard to overestimate. Their tremendous success serves as a natural motivation for the following very general and deep informal questions: what are the essential properties of random graphs? How can one tell when a given graph behaves like a random graph? How to create deterministically graphs that look random-like? This leads us to a concept of pseudo-random graphs and the aim of this survey is to provide a systematic treatment of this concept.Comment: 50 page
    corecore