59 research outputs found

    Exponential Energy Decay for Damped Klein-Gordon Equation with Nonlinearities of Arbitrary Growth

    Full text link
    We derive a uniform exponential decay of the total energy for the nonlinear Klein-Gordon equation with a damping around spatial infinity in the whole space or in the exterior of a star shaped obstacle

    A note on a class of 4th order hyperbolic problems with weak and strong damping and superlinear source term

    Get PDF
    In this paper we study a initial-boundary value problem for 4th order hyperbolic equations with weak and strong damping terms and superlinear source term. For blow-up solutions a lower bound of the blow-up time is derived. Then we extend the results to a class of equations where a positive power of gradient term is introduced

    Long-Time Behavior of Quasilinear Thermoelastic Kirchhoff-Love Plates with Second Sound

    Get PDF
    We consider an initial-boundary-value problem for a thermoelastic Kirchhoff & Love plate, thermally insulated and simply supported on the boundary, incorporating rotational inertia and a quasilinear hypoelastic response, while the heat effects are modeled using the hyperbolic Maxwell-Cattaneo-Vernotte law giving rise to a 'second sound' effect. We study the local well-posedness of the resulting quasilinear mixed-order hyperbolic system in a suitable solution class of smooth functions mapping into Sobolev HkH^{k}-spaces. Exploiting the sole source of energy dissipation entering the system through the hyperbolic heat flux moment, provided the initial data are small in a lower topology (basic energy level corresponding to weak solutions), we prove a nonlinear stabilizability estimate furnishing global existence & uniqueness and exponential decay of classical solutions.Comment: 46 page

    Boundary Stabilization of Quasilinear Maxwell Equations

    Get PDF
    We investigate an initial-boundary value problem for a quasilinear nonhomogeneous, anisotropic Maxwell system subject to an absorbing boundary condition of Silver & M\"uller type in a smooth, bounded, strictly star-shaped domain of R3\mathbb{R}^{3}. Imposing usual smallness assumptions in addition to standard regularity and compatibility conditions, a nonlinear stabilizability inequality is obtained by showing nonlinear dissipativity and observability-like estimates enhanced by an intricate regularity analysis. With the stabilizability inequality at hand, the classic nonlinear barrier method is employed to prove that small initial data admit unique classical solutions that exist globally and decay to zero at an exponential rate. Our approach is based on a recently established local well-posedness theory in a class of H3\mathcal{H}^{3}-valued functions.Comment: 22 page

    Exponential Decay of Quasilinear Maxwell Equations with Interior Conductivity

    Get PDF
    We consider a quasilinear nonhomogeneous, anisotropic Maxwell system in a bounded smooth domain of R3\mathbb{R}^{3} with a strictly positive conductivity subject to the boundary conditions of a perfect conductor. Under appropriate regularity conditions, adopting a classical L2L^{2}-Sobolev solution framework, a nonlinear energy barrier estimate is established for local-in-time H3H^{3}-solutions to the Maxwell system by a proper combination of higher-order energy and observability-type estimates under a smallness assumption on the initial data. Technical complications due to quasilinearity, anisotropy and the lack of solenoidality, etc., are addressed. Finally, provided the initial data are small, the barrier method is applied to prove that local solutions exist globally and exhibit an exponential decay rate.Comment: 24 page

    On the lifespan of classical solutions to a non-local porous medium problem with nonlinear boundary conditions

    Get PDF
    In this paper we analyze the porous medium equation \begin{equation}\label{ProblemAbstract} \tag{◊\Diamond} %\begin{cases} u_t=\Delta u^m + a\io u^p-b u^q -c\lvert\nabla\sqrt{u}\rvert^2 \quad \textrm{in}\quad \Omega \times I,%\\ %u_\nu-g(u)=0 & \textrm{on}\; \partial \Omega, t>0,\\ %u({\bf x},0)=u_0({\bf x})&{\bf x} \in \Omega,\\ %\end{cases} \end{equation} where Ω\Omega is a bounded and smooth domain of RN\R^N, with N≥1N\geq 1, and I=[0,t∗)I= [0,t^*) is the maximal interval of existence for uu. The constants a,b,ca,b,c are positive, m,p,qm,p,q proper real numbers larger than 1 and the equation is complemented with nonlinear boundary conditions involving the outward normal derivative of uu. Under some hypothesis on the data, including intrinsic relations between m,pm,p and qq, and assuming that for some positive and sufficiently regular function u_0(\nx) the Initial Boundary Value Problem (IBVP) associated to \eqref{ProblemAbstract} possesses a positive classical solution u=u(\nx,t) on Ω×I\Omega \times I: \begin{itemize} \item [▹\triangleright] when p>qp>q and in 2- and 3-dimensional domains, we determine a \textit{lower bound of} t∗t^* for those uu becoming unbounded in Lm(p−1)(Ω)L^{m(p-1)}(\Omega) at such t∗t^*; \item [▹\triangleright] when p<qp<q and in NN-dimensional settings, we establish a \textit{global existence criterion} for uu. \end{itemize

    Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping

    Get PDF
    AbstractWe consider the wave equation with supercritical interior and boundary sources and damping terms. The main result of the paper is local Hadamard well-posedness of finite energy (weak) solutions. The results obtained: (1) extend the existence results previously obtained in the literature (by allowing more singular sources); (2) show that the corresponding solutions satisfy Hadamard well-posedness conditions during the time of existence. This result provides a positive answer to an open question in the area and it allows for the construction of a strongly continuous semigroup representing the dynamics governed by the wave equation with supercritical sources and damping

    Long-time behavior of quasilinear thermoelastic Kirchhoff-Love plates with second sound

    Get PDF
    We consider an initial-boundary-value problem for a thermoelastic Kirchhoff & Love plate, thermally insulated and simply supported on the boundary, incorporating rotational inertia and a quasilinear hypoelastic response, while the heat effects are modeled using the hyperbolic Maxwell-Cattaneo-Vernotte law giving rise to a `second sound\u27 effect. We study the local well-posedness of the resulting quasilinear mixed-order hyperbolic system in a suitable solution class of smooth functions mapping into Sobolev H\textit{H}k^{k}-spaces. Exploiting the sole source of energy dissipation entering the system through the hyperbolic heat flux moment, provided the initial data are small in a lower topology (basic energy level corresponding to weak solutions), we prove a nonlinear stabilizability estimate furnishing global existence & uniqueness and exponential decay of classical solutions
    • …
    corecore