500 research outputs found

    A note on the gap between rank and border rank

    Get PDF
    We study the tensor rank of the tensor corresponding to the algebra of n-variate complex polynomials modulo the dth power of each variable. As a result we find a sequence of tensors with a large gap between rank and border rank, and thus a counterexample to a conjecture of Rhodes. At the same time we obtain a new lower bound on the tensor rank of tensor powers of the generalised W-state tensor. In addition, we exactly determine the tensor rank of the tensor cube of the three-party W-state tensor, thus answering a question of Chen et al.Comment: To appear in Linear Algebra and its Application

    On the Multilinear Complexity of Associative Algebras

    Get PDF
    Christandl and Zuiddam [Matthias Christandl and Jeroen Zuiddam, 2019] study the multilinear complexity of d-fold matrix multiplication in the context of quantum communication complexity. Bshouty [Nader H. Bshouty, 2013] investigates the multilinear complexity of d-fold multiplication in commutative algebras to understand the size of so-called testers. The study of bilinear complexity is a classical topic in algebraic complexity theory, starting with the work by Strassen. However, there has been no systematic study of the multilinear complexity of multilinear maps. In the present work, we systematically investigate the multilinear complexity of d-fold multiplication in arbitrary associative algebras. We prove a multilinear generalization of the famous Alder-Strassen theorem, which is a lower bound for the bilinear complexity of the (2-fold) multiplication in an associative algebra. We show that the multilinear complexity of the d-fold multiplication has a lower bound of d ? dim A - (d-1)t, where t is the number of maximal twosided ideals in A. This is optimal in the sense that there are algebras for which this lower bound is tight. Furthermore, we prove the following dichotomy that the quotient algebra A/rad A determines the complexity of the d-fold multiplication in A: When the semisimple algebra A/rad A is commutative, then the multilinear complexity of the d-fold multiplication in A is polynomial in d. On the other hand, when A/rad A is noncommutative, then the multilinear complexity of the d-fold multiplication in A is exponential in d

    On Degeneration of Tensors and Algebras

    Get PDF
    An important building block in all current asymptotically fast algorithms for matrix multiplication are tensors with low border rank, that is, tensors whose border rank is equal or very close to their size. To find new asymptotically fast algorithms for matrix multiplication, it seems to be important to understand those tensors whose border rank is as small as possible, so called tensors of minimal border rank. We investigate the connection between degenerations of associative algebras and degenerations of their structure tensors in the sense of Strassen. It allows us to describe an open subset of n*n*n tensors of minimal border rank in terms of smoothability of commutative algebras. We describe the smoothable algebra associated to the Coppersmith-Winograd tensor and prove a lower bound for the border rank of the tensor used in the "easy construction" of Coppersmith and Winograd

    Slice Rank of Block Tensors and Irreversibility of Structure Tensors of Algebras

    Get PDF
    Determining the exponent of matrix multiplication ? is one of the central open problems in algebraic complexity theory. All approaches to design fast matrix multiplication algorithms follow the following general pattern: We start with one "efficient" tensor T of fixed size and then we use a way to get a large matrix multiplication out of a large tensor power of T. In the recent years, several so-called barrier results have been established. A barrier result shows a lower bound on the best upper bound for the exponent of matrix multiplication that can be obtained by a certain restriction starting with a certain tensor. We prove the following barrier over C: Starting with a tensor of minimal border rank satisfying a certain genericity condition, except for the diagonal tensor, it is impossible to prove ? = 2 using arbitrary restrictions. This is astonishing since the tensors of minimal border rank look like the most natural candidates for designing fast matrix multiplication algorithms. We prove this by showing that all of these tensors are irreversible, using a structural characterisation of these tensors. To obtain our result, we relate irreversibility to asymptotic slice rank and instability of tensors and prove that the instability of block tensors can often be decided by looking only on the sizes of nonzero blocks

    The periodic sl(2|1) alternating spin chain and its continuum limit as a bulk Logarithmic Conformal Field Theory at c=0

    Full text link
    The periodic sl(2|1) alternating spin chain encodes (some of) the properties of hulls of percolation clusters, and is described in the continuum limit by a logarithmic conformal field theory (LCFT) at central charge c=0. This theory corresponds to the strong coupling regime of a sigma model on the complex projective superspace CP1∣1=U(2∣1)/(U(1)×U(1∣1))\mathbb{CP}^{1|1} = \mathrm{U}(2|1) / (\mathrm{U}(1) \times \mathrm{U}(1|1)), and the spectrum of critical exponents can be obtained exactly. In this paper we push the analysis further, and determine the main representation theoretic (logarithmic) features of this continuum limit by extending to the periodic case the approach of [N. Read and H. Saleur, Nucl. Phys. B 777 316 (2007)]. We first focus on determining the representation theory of the finite size spin chain with respect to the algebra of local energy densities provided by a representation of the affine Temperley-Lieb algebra at fugacity one. We then analyze how these algebraic properties carry over to the continuum limit to deduce the structure of the space of states as a representation over the product of left and right Virasoro algebras. Our main result is the full structure of the vacuum module of the theory, which exhibits Jordan cells of arbitrary rank for the Hamiltonian.Comment: 69pp, 8 fig

    Slice rank of block tensors and irreversibility of structure tensors of algebras

    Get PDF

    The Graph Isomorphism Problem and approximate categories

    Full text link
    It is unknown whether two graphs can be tested for isomorphism in polynomial time. A classical approach to the Graph Isomorphism Problem is the d-dimensional Weisfeiler-Lehman algorithm. The d-dimensional WL-algorithm can distinguish many pairs of graphs, but the pairs of non-isomorphic graphs constructed by Cai, Furer and Immerman it cannot distinguish. If d is fixed, then the WL-algorithm runs in polynomial time. We will formulate the Graph Isomorphism Problem as an Orbit Problem: Given a representation V of an algebraic group G and two elements v_1,v_2 in V, decide whether v_1 and v_2 lie in the same G-orbit. Then we attack the Orbit Problem by constructing certain approximate categories C_d(V), d=1,2,3,... whose objects include the elements of V. We show that v_1 and v_2 are not in the same orbit by showing that they are not isomorphic in the category C_d(V) for some d. For every d this gives us an algorithm for isomorphism testing. We will show that the WL-algorithms reduce to our algorithms, but that our algorithms cannot be reduced to the WL-algorithms. Unlike the Weisfeiler-Lehman algorithm, our algorithm can distinguish the Cai-Furer-Immerman graphs in polynomial time.Comment: 29 page

    A note on the gap between rank and border rank

    Get PDF
    We study the tensor rank of a certain algebra. As a result we find a sequence of tensors with a large gap between rank and border rank, and thus a counterexample to a conjecture of Rhodes. We also obtain a new lower bound on the tensor rank of powers of the generalized W-state
    • …
    corecore