6,014 research outputs found

    Efficient algorithms for three-dimensional axial and planar random assignment problems

    Full text link
    Beautiful formulas are known for the expected cost of random two-dimensional assignment problems, but in higher dimensions even the scaling is not known. In three dimensions and above, the problem has natural "Axial" and "Planar" versions, both of which are NP-hard. For 3-dimensional Axial random assignment instances of size nn, the cost scales as Ω(1/n)\Omega(1/n), and a main result of the present paper is a linear-time algorithm that, with high probability, finds a solution of cost O(n1+o(1))O(n^{-1+o(1)}). For 3-dimensional Planar assignment, the lower bound is Ω(n)\Omega(n), and we give a new efficient matching-based algorithm that with high probability returns a solution with cost O(nlogn)O(n \log n)

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Local search heuristics for multi-index assignment problems with decomposable costs.

    Get PDF
    The multi-index assignment problem (MIAP) with decomposable costs is a natural generalization of the well-known assignment problem. Applications of the MIAP arise for instance in the field of multi-target multi-sensor tracking. We describe an (exponentially sized) neighborhood for a solution of the MIAP with decomposable costs, and show that one can find a best solution in this neighborhood in polynomial time. Based on this neighborhood, we propose a local search algorithm. We empirically test the performance of published constructive heuristics and the local search algorithm on random instances; a straightforward tabu search is also tested. Finally, we compute lower bounds to our problem, which enable us to assess the quality of the solutions found.Assignment; Costs; Heuristics; Problems; Applications; Performance;

    Bounds on Integrals with Respect to Multivariate Copulas

    Full text link
    Finding upper and lower bounds to integrals with respect to copulas is a quite prominent problem in applied probability. In their 2014 paper, Hofer and Iaco showed how particular two dimensional copulas are related to optimal solutions of the two dimensional assignment problem. Using this, they managed to approximate integrals with respect to two dimensional copulas. In this paper, we will further illuminate this connection, extend it to d-dimensional copulas and therefore generalize the method from Hofer and Iaco to arbitrary dimensions. We also provide convergence statements. As an example, we consider three dimensional dependence measures

    Flavor-Changing Processes in Extended Technicolor

    Full text link
    We analyze constraints on a class of extended technicolor (ETC) models from neutral flavor-changing processes induced by (dimension-six) four-fermion operators. The ETC gauge group is taken to commute with the standard-model gauge group. The models in the class are distinguished by how the left- and right-handed (L,R)(L,R) components of the quarks and charged leptons transform under the ETC group. We consider K0Kˉ0K^{0} - \bar K^0 and other pseudoscalar meson mixings, and conclude that they are adequately suppressed if the LL and RR components of the relevant quarks are assigned to the same (fundamental or conjugate-fundamental) representation of the ETC group. Models in which the LL and RR components of the down-type quarks are assigned to relatively conjugate representations, while they can lead to realistic CKM mixing and intra-family mass splittings, do not adequately suppress these mixing processes. We identify an approximate global symmetry that elucidates these behavioral differences and can be used to analyze other possible representation assignments. Flavor-changing decays, involving quarks and/or leptons, are adequately suppressed for any ETC-representation assignment of the LL and RR components of the quarks, as well as the leptons. We draw lessons for future ETC model building.Comment: 25 page

    Planar 3-dimensional assignment problems with Monge-like cost arrays

    Get PDF
    Given an n×n×pn\times n\times p cost array CC we consider the problem pp-P3AP which consists in finding pp pairwise disjoint permutations φ1,φ2,,φp\varphi_1,\varphi_2,\ldots,\varphi_p of {1,,n}\{1,\ldots,n\} such that k=1pi=1nciφk(i)k\sum_{k=1}^{p}\sum_{i=1}^nc_{i\varphi_k(i)k} is minimized. For the case p=np=n the planar 3-dimensional assignment problem P3AP results. Our main result concerns the pp-P3AP on cost arrays CC that are layered Monge arrays. In a layered Monge array all n×nn\times n matrices that result from fixing the third index kk are Monge matrices. We prove that the pp-P3AP and the P3AP remain NP-hard for layered Monge arrays. Furthermore, we show that in the layered Monge case there always exists an optimal solution of the pp-3PAP which can be represented as matrix with bandwidth 4p3\le 4p-3. This structural result allows us to provide a dynamic programming algorithm that solves the pp-P3AP in polynomial time on layered Monge arrays when pp is fixed.Comment: 16 pages, appendix will follow in v

    Walking in the SU(N)

    Get PDF
    We study the phase diagram as function of the number of colours and flavours of asymptotically free non-supersymmetric theories with matter in higher dimensional representations of arbitrary SU(N) gauge groups. Since matter in higher dimensional representations screens more than in the fundamental a general feature is that a lower number of flavours is needed to achieve a near-conformal theory. We study the spectrum of the theories near the fixed point and consider possible applications of our analysis to the dynamical breaking of the electroweak symmetry.Comment: 12 page
    corecore