7,508 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Technology for Low Resolution Space Based RSO Detection and Characterisation

    Get PDF
    Space Situational Awareness (SSA) refers to all activities to detect, identify and track objects in Earth orbit. SSA is critical to all current and future space activities and protect space assets by providing access control, conjunction warnings, and monitoring status of active satellites. Currently SSA methods and infrastructure are not sufficient to account for the proliferations of space debris. In response to the need for better SSA there has been many different areas of research looking to improve SSA most of the requiring dedicated ground or space-based infrastructure. In this thesis, a novel approach for the characterisation of RSO’s (Resident Space Objects) from passive low-resolution space-based sensors is presented with all the background work performed to enable this novel method. Low resolution space-based sensors are common on current satellites, with many of these sensors being in space using them passively to detect RSO’s can greatly augment SSA with out expensive infrastructure or long lead times. One of the largest hurtles to overcome with research in the area has to do with the lack of publicly available labelled data to test and confirm results with. To overcome this hurtle a simulation software, ORBITALS, was created. To verify and validate the ORBITALS simulator it was compared with the Fast Auroral Imager images, which is one of the only publicly available low-resolution space-based images found with auxiliary data. During the development of the ORBITALS simulator it was found that the generation of these simulated images are computationally intensive when propagating the entire space catalog. To overcome this an upgrade of the currently used propagation method, Specialised General Perturbation Method 4th order (SGP4), was performed to allow the algorithm to run in parallel reducing the computational time required to propagate entire catalogs of RSO’s. From the results it was found that the standard facet model with a particle swarm optimisation performed the best estimating an RSO’s attitude with a 0.66 degree RMSE accuracy across a sequence, and ~1% MAPE accuracy for the optical properties. This accomplished this thesis goal of demonstrating the feasibility of low-resolution passive RSO characterisation from space-based platforms in a simulated environment

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    The infinite horizon investment-consumption problem for Epstein-Zin stochastic differential utility. II : Existence, uniqueness and verification for ϑ∈(0,1)

    Get PDF
    In this article, we consider the optimal investment–consumption problem for an agent with preferences governed by Epstein–Zin (EZ) stochastic differential utility (SDU) over an infinite horizon. In a companion paper Herdegen et al. (Finance Stoch. 27:127–158, 2023), we argued that it is best to work with an aggregator in discounted form and that the coefficients R of relative risk aversion and S of elasticity of intertemporal complementarity (the reciprocal of the coefficient of elasticity of intertemporal substitution) must lie on the same side of unity for the problem to be well founded. This can be equivalently expressed as ϑ:=1−R1−S>0. In this paper, we focus on the case ϑ∈(0,1). The paper has three main contributions: first, to prove existence of infinite-horizon EZ SDU for a wide class of consumption streams and then (by generalising the definition of SDU) to extend this existence result to any consumption stream; second, to prove uniqueness of infinite-horizon EZ SDU for all consumption streams; and third, to verify the optimality of an explicit candidate solution to the investment–consumption problem in the setting of a Black–Scholes–Merton financial market

    Engineering Systems of Anti-Repressors for Next-Generation Transcriptional Programming

    Get PDF
    The ability to control gene expression in more precise, complex, and robust ways is becoming increasingly relevant in biotechnology and medicine. Synthetic biology has sought to accomplish such higher-order gene regulation through the engineering of synthetic gene circuits, whereby a gene’s expression can be controlled via environmental, temporal, or cellular cues. A typical approach to gene regulation is through transcriptional control, using allosteric transcription factors (TFs). TFs are regulatory proteins that interact with operator DNA elements located in proximity to gene promoters to either compromise or activate transcription. For many TFs, including the ones discussed here, this interaction is modulated by binding to a small molecule ligand for which the TF evolved natural specificity and a related metabolism. This modulation can occur with two main phenotypes: a TF shows the repressor (X+) phenotype if its binding to the ligand causes it to dissociate from the DNA, allowing transcription, while a TF shows the anti-repressor (XA) phenotype if its binding to the ligand causes it to associate to the DNA, preventing transcription. While both functional phenotypes are vital components of regulatory gene networks, anti-repressors are quite rare in nature compared to repressors and thus must be engineered. We first developed a generalized workflow for engineering systems of anti-repressors from bacterial TFs in a family of transcription factors related to the ubiquitous lactose repressor (LacI), the LacI/GalR family. Using this workflow, which is based on a re-routing of the TF’s allosteric network, we engineered anti-repressors in the fructose repressor (anti-FruR – responsive to fructose-1,6-phosphate) and ribose repressor (anti-RbsR – responsive to D-ribose) scaffolds, to complement XA TFs engineered previously in the LacI scaffold (anti-LacI – responsive to IPTG). Engineered TFs were then conferred with alternate DNA binding. To demonstrate their utility in synthetic gene circuits, systems of engineered TFs were then deployed to construct transcriptional programs, achieving all of the NOT-oriented Boolean logical operations – NOT, NOR, NAND, and XNOR – in addition to BUFFER and AND. Notably, our gene circuits built using anti-repressors are far simpler in design and, therefore, exert decreased burden on the chassis cells compared to the state-of-the-art as anti-repressors represent compressed logical operations (gates). Further, we extended this workflow to engineer ligand specificity in addition to regulatory phenotype. Performing the engineering workflow with a fourth member of the LacI/GalR family, the galactose isorepressor (GalS – naturally responsive to D-fucose), we engineered IPTG-responsive repressor and anti-repressor GalS mutants in addition to a D-fucose responsive anti-GalS TF. These engineered TFs were then used to create BANDPASS and BANDSTOP biological signal processing filters, themselves compressed compared to the state-of-the-art, and open-loop control systems. These provided facile methods for dynamic turning ‘ON’ and ‘OFF’ of genes in continuous growth in real time. This presents a general advance in gene regulation, moving beyond simple inducible promoters. We then demonstrated the capabilities of our engineered TFs to function in combinatorial logic using a layered logic approach, which currently stands as the state-of-the art. Using our anti-repressors in layered logic had the advantage of reducing cellular metabolic burden, as we were able to create the fundamental NOT/NOR operations with fewer genetic parts. Additionally, we created more TFs to use in layered logic approaches to prevent cellular cross-talk and minimize the number of TFs necessary to create these gene circuits. Here we demonstrated the successful deployment of our XA-built NOR gate system to create the BUFFER, NOT, NOR, OR, AND, and NAND gates. The work presented here describes a workflow for engineering (i) allosteric phenotype, (ii) ligand selectivity, and (iii) DNA specificity in allosteric transcription factors. The products of the workflow themselves serve as vital tools for the construction of next-generation synthetic gene circuits and genetic regulatory devices. Further, from the products of the workflow presented here, certain design heuristics can be gleaned, which should better facilitate the design of allosteric TFs in the future, moving toward a semi-rational engineering approach. Additionally, the work presented here outlines a transcriptional programming structure and metrology which can be broadly adapted and scaled for future applications and expansion. Consequently, this thesis presents a means for advanced control of gene expression, with promise to have long-reaching implications in the future.Ph.D

    Gaussian Control Barrier Functions : A Gaussian Process based Approach to Safety for Robots

    Get PDF
    In recent years, the need for safety of autonomous and intelligent robots has increased. Today, as robots are being increasingly deployed in closer proximity to humans, there is an exigency for safety since human lives may be at risk, e.g., self-driving vehicles or surgical robots. The objective of this thesis is to present a safety framework for dynamical systems that leverages tools from control theory and machine learning. More formally, the thesis presents a data-driven framework for designing safety function candidates which ensure properties of forward invariance. The potential benefits of the results presented in this thesis are expected to help applications such as safe exploration, collision avoidance problems, manipulation tasks, and planning, to name some. We utilize Gaussian processes (GP) to place a prior on the desired safety function candidate, which is to be utilized as a control barrier function (CBF). The resultant formulation is called Gaussian CBFs and they reside in a reproducing kernel Hilbert space. A key concept behind Gaussian CBFs is the incorporation of both safety belief as well as safety uncertainty, which former barrier function formulations did not consider. This is achieved by using robust posterior estimates from a GP where the posterior mean and variance serve as surrogates for the safety belief and uncertainty respectively. We synthesize safe controllers by framing a convex optimization problem where the kernel-based representation of GPs allows computing the derivatives in closed-form analytically. Finally, in addition to the theoretical and algorithmic frameworks in this thesis, we rigorously test our methods in hardware on a quadrotor platform. The platform used is a Crazyflie 2.1 which is a versatile palm-sized quadrotor. We provide our insights and detailed discussions on the hardware implementations which will be useful for large-scale deployment of the techniques presented in this dissertation.Ph.D

    Modeling and Simulation in Engineering

    Get PDF
    The Special Issue Modeling and Simulation in Engineering, belonging to the section Engineering Mathematics of the Journal Mathematics, publishes original research papers dealing with advanced simulation and modeling techniques. The present book, “Modeling and Simulation in Engineering I, 2022”, contains 14 papers accepted after peer review by recognized specialists in the field. The papers address different topics occurring in engineering, such as ferrofluid transport in magnetic fields, non-fractal signal analysis, fractional derivatives, applications of swarm algorithms and evolutionary algorithms (genetic algorithms), inverse methods for inverse problems, numerical analysis of heat and mass transfer, numerical solutions for fractional differential equations, Kriging modelling, theory of the modelling methodology, and artificial neural networks for fault diagnosis in electric circuits. It is hoped that the papers selected for this issue will attract a significant audience in the scientific community and will further stimulate research involving modelling and simulation in mathematical physics and in engineering

    Structured machine learning models for robustness against different factors of variability in robot control

    Get PDF
    An important feature of human sensorimotor skill is our ability to learn to reuse them across different environmental contexts, in part due to our understanding of attributes of variability in these environments. This thesis explores how the structure of models used within learning for robot control could similarly help autonomous robots cope with variability, hence achieving skill generalisation. The overarching approach is to develop modular architectures that judiciously combine different forms of inductive bias for learning. In particular, we consider how models and policies should be structured in order to achieve robust behaviour in the face of different factors of variation - in the environment, in objects and in other internal parameters of a policy - with the end goal of more robust, accurate and data-efficient skill acquisition and adaptation. At a high level, variability in skill is determined by variations in constraints presented by the external environment, and in task-specific perturbations that affect the specification of optimal action. A typical example of environmental perturbation would be variation in lighting and illumination, affecting the noise characteristics of perception. An example of task perturbations would be variation in object geometry, mass or friction, and in the specification of costs associated with speed or smoothness of execution. We counteract these factors of variation by exploring three forms of structuring: utilising separate data sets curated according to the relevant factor of variation, building neural network models that incorporate this factorisation into the very structure of the networks, and learning structured loss functions. The thesis is comprised of four projects exploring this theme within robotics planning and prediction tasks. Firstly, in the setting of trajectory prediction in crowded scenes, we explore a modular architecture for learning static and dynamic environmental structure. We show that factorising the prediction problem from the individual representations allows for robust and label efficient forward modelling, and relaxes the need for full model re-training in new environments. This modularity explicitly allows for a more flexible and interpretable adaptation of trajectory prediction models to using pre-trained state of the art models. We show that this results in more efficient motion prediction and allows for performance comparable to the state-of-the-art supervised 2D trajectory prediction. Next, in the domain of contact-rich robotic manipulation, we consider a modular architecture that combines model-free learning from demonstration, in particular dynamic movement primitives (DMP), with modern model-free reinforcement learning (RL), using both on-policy and off-policy approaches. We show that factorising the skill learning problem to skill acquisition and error correction through policy adaptation strategies such as residual learning can help improve the overall performance of policies in the context of contact-rich manipulation. Our empirical evaluation demonstrates how to best do this with DMPs and propose “residual Learning from Demonstration“ (rLfD), a framework that combines DMPs with RL to learn a residual correction policy. Our evaluations, performed both in simulation and on a physical system, suggest that applying residual learning directly in task space and operating on the full pose of the robot can significantly improve the overall performance of DMPs. We show that rLfD offers a gentle to the joints solution that improves the task success and generalisation of DMPs. Last but not least, our study shows that the extracted correction policies can be transferred to different geometries and frictions through few-shot task adaptation. Third, we employ meta learning to learn time-invariant reward functions, wherein both the objectives of a task (i.e., the reward functions) and the policy for performing that task optimally are learnt simultaneously. We propose a novel inverse reinforcement learning (IRL) formulation that allows us to 1) vary the length of execution by learning time-invariant costs, and 2) relax the temporal alignment requirements for learning from demonstration. We apply our method to two different types of cost formulations and evaluate their performance in the context of learning reward functions for simulated placement and peg in hole tasks executed on a 7DoF Kuka IIWA arm. Our results show that our approach enables learning temporally invariant rewards from misaligned demonstration that can also generalise spatially to out of distribution tasks. Finally, we employ our observations to evaluate adversarial robustness in the context of transfer learning from a source trained on CIFAR 100 to a target network trained on CIFAR 10. Specifically, we study the effects of using robust optimisation in the source and target networks. This allows us to identify transfer learning strategies under which adversarial defences are successfully retained, in addition to revealing potential vulnerabilities. We study the extent to which adversarially robust features can preserve their defence properties against black and white-box attacks under three different transfer learning strategies. Our empirical evaluations give insights on how well adversarial robustness under transfer learning can generalise.

    Geometric Active Disturbance Rejection Control for Autonomous Rotorcraft in Complex Atmospheric Environment

    Get PDF
    This dissertation presents several novel robust tracking control schemes of rotorcraft unmanned aerial vehicles under realistic atmospheric turbulence. To achieve fast converging and stable performance of the rotorcraft control scheme, a new H\ {o}lder-continuous differentiator, similar to the super-twisting algorithm used in the second-order sliding model control scheme, is proposed with guaranteed fast finite-time stability. Unlike the super-twisting algorithm, which uses a sliding-mode structure to achieve finite-time stability, the proposed differentiator maintains its fast finite-time stability with H\ {o}lder continuity, theoretically eliminating the harmful chattering phenomenon in practical control applications. Perturbation and noise robustness analyses are conducted for the proposed differentiator. The dissertation formulates the rotorcraft tracking control and disturbance estimation problems separately. The rotorcraft aerial vehicle is modeled as a rigid body with control inputs that actuate all degrees of freedom of rotational motion and only one degree of freedom of translational motion. The motion of the aircraft is globally represented on \TSE, which is the tangent bundle of the special Euclidean group \SE. The translational and attitude control schemes track the desired position and attitude on \SE. The disturbance estimation problem is formulated as an extended states observer on \TSE. Next, two rotorcraft control schemes on \SE with disturbance rejection mechanisms are presented. The proposed disturbance rejection control systems comprise two parts: an extended states observer for disturbance estimation and a tracking control scheme containing the disturbance rejection term to track the trajectory. The first disturbance rejection control scheme comprises an exponentially stable extended states observer and an asymptotically stable tracking control scheme. The second system comprises a fast finite-time stable extended state observer and a fast finite-time stable tracking control scheme. The fast finite-time stable extended state observer uses the \textup{H\ {o}}lder-continuous differentiator to estimate the resultant external disturbance force and disturbance torque acting on the vehicle. It ensures stable convergence of disturbance estimation errors in finite time when the disturbances are constant. Software-in-the-loop simulation is carried out for the active disturbance rejection control scheme with an open-source autopilot and a physics-based simulation tool. The simulation utilizes simulated wind gusts, propeller aerodynamics, actuator limitation, and measurement noise to validate the disturbance rejection control systems in a simulated environment with high fidelity. Two sets of flight experiments are conducted to investigate the autonomous rotorcraft flight control performance under turbulent income flows. A wind tunnel composed of fan arrays is involved in both experiments to provide different turbulent incoming flows by adjusting the duty of individual fans. The first set of experiments conducts income flow measurements for wind tunnel calibration. For the turbulent flows generated by different fan configurations, their steady velocity field and unsteady turbulence characteristics are measured by a pressure scanner and hot-wire anemometer. The second set of experiments involves flight tests of a rotorcraft within the turbulent environment measured and calibrated in the first experiment set. The proposed extended states observer is implemented onto a rotorcraft by customizing an open-source autopilot software. With this implementation, the flight control performance of the proposed disturbance rejection control schemes is presented and compared with the autopilot without customization. The experimental results show that the proposed disturbance rejection control scheme enhanced by the disturbance estimation schem

    Explainable Physics-informed Deep Learning for Rainfall-runoff Modeling and Uncertainty Assessment across the Continental United States

    Get PDF
    Hydrologic models provide a comprehensive tool to calibrate streamflow response to environmental variables. Various hydrologic modeling approaches, ranging from physically based to conceptual to entirely data-driven models, have been widely used for hydrologic simulation. During the recent years, however, Deep Learning (DL), a new generation of Machine Learning (ML), has transformed hydrologic simulation research to a new direction. DL methods have recently proposed for rainfall-runoff modeling that complement both distributed and conceptual hydrologic models, particularly in a catchment where data to support a process-based model is scared and limited. This dissertation investigated the applicability of two advanced probabilistic physics-informed DL algorithms, i.e., deep autoregressive network (DeepAR) and temporal fusion transformer (TFT), for daily rainfall-runoff modeling across the continental United States (CONUS). We benchmarked our proposed models against several physics-based hydrologic approaches such as the Sacramento Soil Moisture Accounting Model (SAC-SMA), Variable Infiltration Capacity (VIC), Framework for Understanding Structural Errors (FUSE), Hydrologiska ByrĂ„ns Vattenbalansavdelning (HBV), and the mesoscale hydrologic model (mHM). These benchmark models can be distinguished into two different groups. The first group are the models calibrated for each basin individually (e.g., SAC-SMA, VIC, FUSE2, mHM and HBV) while the second group, including our physics-informed approaches, is made up of the models that were regionally calibrated. Models in this group share one parameter set for all basins in the dataset. All the approaches were implemented and tested using Catchment Attributes and Meteorology for Large-sample Studies (CAMELS)\u27s Maurer datasets. We developed the TFT and DeepAR with two different configurations i.e., with (physics-informed model) and without (the original model) static attributes. Various catchment static and dynamic physical attributes were incorporated into the pipeline with various spatiotemporal variabilities to simulate how a drainage system responds to rainfall-runoff processes. To demonstrate how the model learned to differentiate between different rainfall–runoff behaviors across different catchments and to identify the dominant process, sensitivity and explainability analysis of modeling outcomes are also performed. Despite recent advancements, deep networks are perceived as being challenging to parameterize; thus, their simulation may propagate error and uncertainty in modeling. To address uncertainty, a quantile likelihood function was incorporated as the TFT loss function. The results suggest that the physics-informed TFT model was superior in predicting high and low flow fluctuations compared to the original TFT and DeepAR models (without static attributes) or even the physics-informed DeepAR. Physics-informed TFT model well recognized which static attributes more contributing to streamflow generation of each specific catchment considering its climate, topography, land cover, soil, and geological conditions. The interpretability and the ability of the physics-informed TFT model to assimilate the multisource of information and parameters make it a strong candidate for regional as well as continental-scale hydrologic simulations. It was noted that both physics-informed TFT and DeepAR were more successful in learning the intermediate flow and high flow regimes rather than the low flow regime. The advantage of the high flow can be attributed to learning a more generalizable mapping between static and dynamic attributes and runoff parameters. It seems both TFT and DeepAR may have enabled the learning of some true processes that are missing from both conceptual and physics-based models, possibly related to deep soil water storage (the layer where soil water is not sensitive to daily evapotranspiration), saturated hydraulic conductivity, and vegetation dynamics
    • 

    corecore