6,919 research outputs found

    Outage analysis of superposition modulation aided network coded cooperation in the presence of network coding noise

    No full text
    We consider a network, where multiple sourcedestination pairs communicate with the aid of a half-duplex relay node (RN), which adopts decode-forward (DF) relaying and superposition-modulation (SPM) for combining the signals transmitted by the source nodes (SNs) and then forwards the composite signal to all the destination nodes (DNs). Each DN extracts the signals transmitted by its own SN from the composite signal by subtracting the signals overheard from the unwanted SNs. We derive tight lower-bounds for the outage probability for transmission over Rayleigh fading channels and invoke diversity combining at the DNs, which is validated by simulation for both the symmetric and the asymmetric network configurations. For the high signal-to-noise ratio regime, we derive both an upperbound as well as a lower-bound for the outage performance and analyse the achievable diversity gain. It is revealed that a diversity order of 2 is achieved, regardless of the number of SN-DN pairs in the network. We also highlight the fact that the outage performance is dominated by the quality of the worst overheated link, because it contributes most substantially to the network coding noise. Finally, we use the lower bound for designing a relay selection scheme for the proposed SPM based network coded cooperative communication (SPM-NC-CC) system.<br/

    Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

    Full text link
    This monograph presents a unified treatment of single- and multi-user problems in Shannon's information theory where we depart from the requirement that the error probability decays asymptotically in the blocklength. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents the study of asymptotic estimates with non-vanishing error probabilities. In Part I, after reviewing the fundamentals of information theory, we discuss Strassen's seminal result for binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-II error probability with growing number of independent observations is characterized. In Part II, we use this basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions for point-to-point communication. Finally in Part III, we consider network information theory problems for which the second-order asymptotics are known. These problems include some classes of channels with random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further research.Comment: Further comments welcom

    Achievable Rate Regions for Two-Way Relay Channel using Nested Lattice Coding

    Get PDF
    This paper studies Gaussian Two-Way Relay Channel where two communication nodes exchange messages with each other via a relay. It is assumed that all nodes operate in half duplex mode without any direct link between the communication nodes. A compress-and-forward relaying strategy using nested lattice codes is first proposed. Then, the proposed scheme is improved by performing a layered coding : a common layer is decoded by both receivers and a refinement layer is recovered only by the receiver which has the best channel conditions. The achievable rates of the new scheme are characterized and are shown to be higher than those provided by the decode-and-forward strategy in some regions.Comment: 27 pages, 13 figures, Submitted to IEEE Transactions on Wireless Communications (October 2013

    On privacy amplification, lossy compression, and their duality to channel coding

    Full text link
    We examine the task of privacy amplification from information-theoretic and coding-theoretic points of view. In the former, we give a one-shot characterization of the optimal rate of privacy amplification against classical adversaries in terms of the optimal type-II error in asymmetric hypothesis testing. This formulation can be easily computed to give finite-blocklength bounds and turns out to be equivalent to smooth min-entropy bounds by Renner and Wolf [Asiacrypt 2005] and Watanabe and Hayashi [ISIT 2013], as well as a bound in terms of the EγE_\gamma divergence by Yang, Schaefer, and Poor [arXiv:1706.03866 [cs.IT]]. In the latter, we show that protocols for privacy amplification based on linear codes can be easily repurposed for channel simulation. Combined with known relations between channel simulation and lossy source coding, this implies that privacy amplification can be understood as a basic primitive for both channel simulation and lossy compression. Applied to symmetric channels or lossy compression settings, our construction leads to proto- cols of optimal rate in the asymptotic i.i.d. limit. Finally, appealing to the notion of channel duality recently detailed by us in [IEEE Trans. Info. Theory 64, 577 (2018)], we show that linear error-correcting codes for symmetric channels with quantum output can be transformed into linear lossy source coding schemes for classical variables arising from the dual channel. This explains a "curious duality" in these problems for the (self-dual) erasure channel observed by Martinian and Yedidia [Allerton 2003; arXiv:cs/0408008] and partly anticipates recent results on optimal lossy compression by polar and low-density generator matrix codes.Comment: v3: updated to include equivalence of the converse bound with smooth entropy formulations. v2: updated to include comparison with the one-shot bounds of arXiv:1706.03866. v1: 11 pages, 4 figure

    Variable-to-Fixed Length Homophonic Coding Suitable for Asymmetric Channel Coding

    Full text link
    In communication through asymmetric channels the capacity-achieving input distribution is not uniform in general. Homophonic coding is a framework to invertibly convert a (usually uniform) message into a sequence with some target distribution, and is a promising candidate to generate codewords with the nonuniform target distribution for asymmetric channels. In particular, a Variable-to-Fixed length (VF) homophonic code can be used as a suitable component for channel codes to avoid decoding error propagation. However, the existing VF homophonic code requires the knowledge of the maximum relative gap of probabilities between two adjacent sequences beforehand, which is an unrealistic assumption for long block codes. In this paper we propose a new VF homophonic code without such a requirement by allowing one-symbol decoding delay. We evaluate this code theoretically and experimentally to verify its asymptotic optimality.Comment: Full version of the paper to appear in 2017 IEEE International Symposium on Information Theory (ISIT2017

    Accessible Capacity of Secondary Users

    Full text link
    A new problem formulation is presented for the Gaussian interference channels (GIFC) with two pairs of users, which are distinguished as primary users and secondary users, respectively. The primary users employ a pair of encoder and decoder that were originally designed to satisfy a given error performance requirement under the assumption that no interference exists from other users. In the scenario when the secondary users attempt to access the same medium, we are interested in the maximum transmission rate (defined as {\em accessible capacity}) at which secondary users can communicate reliably without affecting the error performance requirement by the primary users under the constraint that the primary encoder (not the decoder) is kept unchanged. By modeling the primary encoder as a generalized trellis code (GTC), we are then able to treat the secondary link and the cross link from the secondary transmitter to the primary receiver as finite state channels (FSCs). Based on this, upper and lower bounds on the accessible capacity are derived. The impact of the error performance requirement by the primary users on the accessible capacity is analyzed by using the concept of interference margin. In the case of non-trivial interference margin, the secondary message is split into common and private parts and then encoded by superposition coding, which delivers a lower bound on the accessible capacity. For some special cases, these bounds can be computed numerically by using the BCJR algorithm. Numerical results are also provided to gain insight into the impacts of the GTC and the error performance requirement on the accessible capacity.Comment: 42 pages, 12 figures, 2 tables; Submitted to IEEE Transactions on Information Theory on December, 2010, Revised on November, 201
    corecore