1,954 research outputs found

    Bounds on the Coefficients of Tension and Flow Polynomials

    Full text link
    The goal of this article is to obtain bounds on the coefficients of modular and integral flow and tension polynomials of graphs. To this end we make use of the fact that these polynomials can be realized as Ehrhart polynomials of inside-out polytopes. Inside-out polytopes come with an associated relative polytopal complex and, for a wide class of inside-out polytopes, we show that this complex has a convex ear decomposition. This leads to the desired bounds on the coefficients of these polynomials.Comment: 16 page

    Spherical sets avoiding a prescribed set of angles

    Get PDF
    Let XX be any subset of the interval [1,1][-1,1]. A subset II of the unit sphere in RnR^n will be called \emph{XX-avoiding} if X\notin X for any u,vIu,v \in I. The problem of determining the maximum surface measure of a {0}\{ 0 \}-avoiding set was first stated in a 1974 note by Witsenhausen; there the upper bound of 1/n1/n times the surface measure of the sphere is derived from a simple averaging argument. A consequence of the Frankl-Wilson theorem is that this fraction decreases exponentially, but until now the 1/31/3 upper bound for the case n=3n=3 has not moved. We improve this bound to 0.3130.313 using an approach inspired by Delsarte's linear programming bounds for codes, combined with some combinatorial reasoning. In the second part of the paper, we use harmonic analysis to show that for n3n\geq 3 there always exists an XX-avoiding set of maximum measure. We also show with an example that a maximiser need not exist when n=2n=2.Comment: 21 pages, 3 figure

    Lower Bounds and Series for the Ground State Entropy of the Potts Antiferromagnet on Archimedean Lattices and their Duals

    Full text link
    We prove a general rigorous lower bound for W(Λ,q)=exp(S0(Λ,q)/kB)W(\Lambda,q)=\exp(S_0(\Lambda,q)/k_B), the exponent of the ground state entropy of the qq-state Potts antiferromagnet, on an arbitrary Archimedean lattice Λ\Lambda. We calculate large-qq series expansions for the exact Wr(Λ,q)=q1W(Λ,q)W_r(\Lambda,q)=q^{-1}W(\Lambda,q) and compare these with our lower bounds on this function on the various Archimedean lattices. It is shown that the lower bounds coincide with a number of terms in the large-qq expansions and hence serve not just as bounds but also as very good approximations to the respective exact functions Wr(Λ,q)W_r(\Lambda,q) for large qq on the various lattices Λ\Lambda. Plots of Wr(Λ,q)W_r(\Lambda,q) are given, and the general dependence on lattice coordination number is noted. Lower bounds and series are also presented for the duals of Archimedean lattices. As part of the study, the chromatic number is determined for all Archimedean lattices and their duals. Finally, we report calculations of chromatic zeros for several lattices; these provide further support for our earlier conjecture that a sufficient condition for Wr(Λ,q)W_r(\Lambda,q) to be analytic at 1/q=01/q=0 is that Λ\Lambda is a regular lattice.Comment: 39 pages, Revtex, 9 encapsulated postscript figures, to appear in Phys. Rev.

    On the chromatic roots of generalized theta graphs

    Full text link
    The generalized theta graph \Theta_{s_1,...,s_k} consists of a pair of endvertices joined by k internally disjoint paths of lengths s_1,...,s_k \ge 1. We prove that the roots of the chromatic polynomial $pi(\Theta_{s_1,...,s_k},z) of a k-ary generalized theta graph all lie in the disc |z-1| \le [1 + o(1)] k/\log k, uniformly in the path lengths s_i. Moreover, we prove that \Theta_{2,...,2} \simeq K_{2,k} indeed has a chromatic root of modulus [1 + o(1)] k/\log k. Finally, for k \le 8 we prove that the generalized theta graph with a chromatic root that maximizes |z-1| is the one with all path lengths equal to 2; we conjecture that this holds for all k.Comment: LaTex2e, 25 pages including 2 figure
    corecore