2,027 research outputs found

    Large-System Analysis of Joint Channel and Data Estimation for MIMO DS-CDMA Systems

    Full text link
    This paper presents a large-system analysis of the performance of joint channel estimation, multiuser detection, and per-user decoding (CE-MUDD) for randomly-spread multiple-input multiple-output (MIMO) direct-sequence code-division multiple-access (DS-CDMA) systems. A suboptimal receiver based on successive decoding in conjunction with linear minimum mean-squared error (LMMSE) channel estimation is investigated. The replica method, developed in statistical mechanics, is used to evaluate the performance in the large-system limit, where the number of users and the spreading factor tend to infinity while their ratio and the number of transmit and receive antennas are kept constant. The performance of the joint CE-MUDD based on LMMSE channel estimation is compared to the spectral efficiencies of several receivers based on one-shot LMMSE channel estimation, in which the decoded data symbols are not utilized to refine the initial channel estimates. The results imply that the use of joint CE-MUDD significantly reduces rate loss due to transmission of pilot signals, especially for multiple-antenna systems. As a result, joint CE-MUDD can provide significant performance gains, compared to the receivers based on one-shot channel estimation.Comment: The paper was resubmitted to IEEE Trans. Inf. Theor

    A Linear Multi-User Detector for STBC MC-CDMA Systems based on the Adaptive Implementation of the Minimum-Conditional Bit-Error-Rate Criterion and on Genetic Algorithm-assisted MMSE Channel Estimation

    Get PDF
    The implementation of efficient baseband receivers characterized by affordable computational load is a crucial point in the development of transmission systems exploiting diversity in different domains. In this paper, we are proposing a linear multi-user detector for MIMO MC-CDMA systems with Alamouti’s Space-Time Block Coding, inspired by the concept of Minimum Conditional Bit-Error-Rate (MCBER) and relying on Genetic-Algorithm (GA)-assisted MMSE channel estimation. The MCBER combiner has been implemented in adaptive way by using Least-Mean-Square (LMS) optimization. Firstly, we shall analyze the proposed adaptive MCBER MUD receiver with ideal knowledge of Channel Status Information (CSI). Afterwards, we shall consider the complete receiver structure, encompassing also the non-ideal GA-assisted channel estimation. Simulation results evidenced that the proposed MCBER receiver always outperforms state-of-the-art receiver schemes based on EGC and MMSE criterion exploiting the same degree of channel knowledge (i.e. ideal or estimated CSI)

    Minimum mean-squared error iterative successive parallel arbitrated decision feedback detectors for DS-CDMA systems

    Get PDF
    In this paper we propose minimum mean squared error (MMSE) iterative successive parallel arbitrated decision feedback (DF) receivers for direct sequence code division multiple access (DS-CDMA) systems. We describe the MMSE design criterion for DF multiuser detectors along with successive, parallel and iterative interference cancellation structures. A novel efficient DF structure that employs successive cancellation with parallel arbitrated branches and a near-optimal low complexity user ordering algorithm are presented. The proposed DF receiver structure and the ordering algorithm are then combined with iterative cascaded DF stages for mitigating the deleterious effects of error propagation for convolutionally encoded systems with both Viterbi and turbo decoding as well as for uncoded schemes. We mathematically study the relations between the MMSE achieved by the analyzed DF structures, including the novel scheme, with imperfect and perfect feedback. Simulation results for an uplink scenario assess the new iterative DF detectors against linear receivers and evaluate the effects of error propagation of the new cancellation methods against existing ones
    • …
    corecore