3,069 research outputs found

    Nonlinear stability of viscous roll waves

    Get PDF
    Extending results of Oh--Zumbrun and Johnson--Zumbrun for parabolic conservation laws, we show that spectral stability implies nonlinear stability for spatially periodic viscous roll wave solutions of the one-dimensional St. Venant equations for shallow water flow down an inclined ramp. The main new issues to be overcome are incomplete parabolicity and the nonconservative form of the equations, which leads to undifferentiated quadratic source terms that cannot be handled using the estimates of the conservative case. The first is resolved by treating the equations in the more favorable Lagrangian coordinates, for which one can obtain large-amplitude nonlinear damping estimates similar to those carried out by Mascia--Zumbrun in the related shock wave case, assuming only symmetrizability of the hyperbolic part. The second is resolved by the observation that, similarly as in the relaxation and detonation cases, sources occurring in nonconservative components experience greater than expected decay, comparable to that experienced by a differentiated source.Comment: Revision includes new appendix containing full proof of nonlinear damping estimate. Minor mathematical typos fixed throughout, and more complete connection to Whitham averaged system added. 42 page

    Blow-up profile of rotating 2D focusing Bose gases

    Full text link
    We consider the Gross-Pitaevskii equation describing an attractive Bose gas trapped to a quasi 2D layer by means of a purely harmonic potential, and which rotates at a fixed speed of rotation Ω\Omega. First we study the behavior of the ground state when the coupling constant approaches a_∗a\_* , the critical strength of the cubic nonlinearity for the focusing nonlinear Schr{\"o}dinger equation. We prove that blow-up always happens at the center of the trap, with the blow-up profile given by the Gagliardo-Nirenberg solution. In particular, the blow-up scenario is independent of Ω\Omega, to leading order. This generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014, vol. 104, p. 141--156) in the non-rotating case. In a second part we consider the many-particle Hamiltonian for NN bosons, interacting with a potential rescaled in the mean-field manner −−a_NN2β−−1w(Nβx),with--a\_N N^{2\beta--1} w(N^{\beta} x), with wapositivefunctionsuchthat a positive function such that \int\_{\mathbb{R}^2} w(x) dx = 1.Assumingthat. Assuming that \beta < 1/2andthat and that a\_N \to a\_*sufficientlyslowly,weprovethatthemany−bodysystemisfullycondensedontheGross−Pitaevskiigroundstateinthelimit sufficiently slowly, we prove that the many-body system is fully condensed on the Gross-Pitaevskii ground state in the limit N \to \infty$
    • …
    corecore