600 research outputs found

    Error linear complexity measures for multisequences

    Get PDF
    Complexity measures for sequences over finite fields, such as the linear complexity and the k-error linear complexity, play an important role in cryptology. Recent developments in stream ciphers point towards an interest in word-based stream ciphers, which require the study of the complexity of multisequences. We introduce various options for error linear complexity measures for multisequences. For finite multisequences as well as for periodic multisequences with prime period, we present formulas for the number of multisequences with given error linear complexity for several cases, and we present lower bounds for the expected error linear complexity

    Mathematical Programming Decoding of Binary Linear Codes: Theory and Algorithms

    Full text link
    Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.Comment: 17 pages, submitted to the IEEE Transactions on Information Theory. Published July 201

    Cascaded tree codes

    Get PDF
    Cascaded tree codes for sequential decoding in presence of nois

    On the computation of the linear complexity and the k-error linear complexity of binary sequences with period a power of two

    Get PDF
    The linear Games-Chan algorithm for computing the linear complexity c(s) of a binary sequence s of period ℓ = 2n requires the knowledge of the full sequence, while the quadratic Berlekamp-Massey algorithm only requires knowledge of 2c(s) terms. We show that we can modify the Games-Chan algorithm so that it computes the complexity in linear time knowing only 2c(s) terms. The algorithms of Stamp-Martin and Lauder-Paterson can also be modified, without loss of efficiency, to compute analogues of the k-error linear complexity for finite binary sequences viewed as initial segments of infinite sequences with period a power of two. We also develop an algorithm which, given a constant c and an infinite binary sequence s with period ℓ = 2n, computes the minimum number k of errors (and the associated error sequence) needed over a period of s for bringing the linear complexity of s below c. The algorithm has a time and space bit complexity of O(ℓ). We apply our algorithm to decoding and encoding binary repeated-root cyclic codes of length ℓ in linear, O(ℓ), time and space. A previous decoding algorithm proposed by Lauder and Paterson has O(ℓ(logℓ)2) complexity

    Turbo space-time coded modulation : principle and performance analysis

    Get PDF
    A breakthrough in coding was achieved with the invention of turbo codes. Turbo codes approach Shannon capacity by displaying the properties of long random codes, yet allowing efficient decoding. Coding alone, however, cannot fully address the problem of multipath fading channel. Recent advances in information theory have revolutionized the traditional view of multipath channel as an impairment. New results show that high gains in capacity can be achieved through the use of multiple antennas at the transmitter and the receiver. To take advantage of these new results in information theory, it is necessary to devise methods that allow communication systems to operate close to the predicted capacity. One such method recently invented is space-time coding, which provides both coding gain and diversity advantage. In this dissertation, a new class of codes is proposed that extends the concept of turbo coding to include space-time encoders as constituent building blocks of turbo codes. The codes are referred to as turbo spacetime coded modulation (turbo-STCM). The motivation behind the turbo-STCM concept is to fuse the important properties of turbo and space-time codes into a unified design framework. A turbo-STCM encoder is proposed, which consists of two space-time codes in recursive systematic form concatenated in parallel. An iterative symbol-by-symbol maximum a posteriori algorithm operating in the log domain is developed for decoding turbo-STCM. The decoder employs two a posteriori probability (APP) computing modules concatenated in parallel; one module for each constituent code. The analysis of turbo-STCM is demonstrated through simulations and theoretical closed-form expressions. Simulation results are provided for 4-PSK and 8-PSK schemes over the Rayleigh block-fading channel. It is shown that the turbo-STCM scheme features full diversity and full coding rate. The significant gain can be obtained in performance over conventional space-time codes of similar complexity. The analytical union bound to the bit error probability is derived for turbo-STCM over the additive white Gaussian noise (AWGN) and the Rayleigh block-fading channels. The bound makes it possible to express the performance analysis of turbo-STCM in terms of the properties of the constituent space-time codes. The union bound is demonstrated for 4-PSK and 8-PSK turbo-STCM with two transmit antennas and one/two receive antennas. Information theoretic bounds such as Shannon capacity, cutoff rate, outage capacity and the Fano bound, are computed for multiantenna systems over the AWGN and fading channels. These bounds are subsequently used as benchmarks for demonstrating the performance of turbo-STCM

    Design of Heat Integrated Low Temperature Distillation Systems

    Get PDF

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    Cascaded tree codes.

    Get PDF
    Also issued as a Ph.D. thesis in the Dept. of Electrical Engineering, 1970

    Shannon capacity of nonlinear communication channels

    Get PDF
    The exponentially increasing demand on operational data rate has been met with technological advances in telecommunication systems such as advanced multilevel and multidimensional modulation formats, fast signal processing, and research into new different media for signal transmission. Since the current communication channels are essentially nonlinear, estimation of the Shannon capacity for modern nonlinear communication channels is required. This PhD research project has targeted the study of the capacity limits of different nonlinear communication channels with a view to enable a significant enhancement in the data rate of the currently deployed fiber networks. In the current study, a theoretical framework for calculating the Shannon capacity of nonlinear regenerative channels has been developed and illustrated on the example of the proposed here regenerative Fourier transform (RFT). Moreover, the maximum gain in Shannon capacity due to regeneration (that is, the Shannon capacity of a system with ideal regenerators – the upper bound on capacity for all regenerative schemes) is calculated analytically. Thus, we derived a regenerative limit to which the capacity of any regenerative system can be compared, as analogue of the seminal linear Shannon limit. A general optimization scheme (regenerative mapping) has been introduced and demonstrated on systems with different regenerative elements: phase sensitive amplifiers and the proposed here multilevel regenerative schemes: the regenerative Fourier transform and the coupled nonlinear loop mirror
    corecore