35,613 research outputs found

    On Pseudocodewords and Improved Union Bound of Linear Programming Decoding of HDPC Codes

    Full text link
    In this paper, we present an improved union bound on the Linear Programming (LP) decoding performance of the binary linear codes transmitted over an additive white Gaussian noise channels. The bounding technique is based on the second-order of Bonferroni-type inequality in probability theory, and it is minimized by Prim's minimum spanning tree algorithm. The bound calculation needs the fundamental cone generators of a given parity-check matrix rather than only their weight spectrum, but involves relatively low computational complexity. It is targeted to high-density parity-check codes, where the number of their generators is extremely large and these generators are spread densely in the Euclidean space. We explore the generator density and make a comparison between different parity-check matrix representations. That density effects on the improvement of the proposed bound over the conventional LP union bound. The paper also presents a complete pseudo-weight distribution of the fundamental cone generators for the BCH[31,21,5] code

    Random Coding Error Exponents for the Two-User Interference Channel

    Full text link
    This paper is about deriving lower bounds on the error exponents for the two-user interference channel under the random coding regime for several ensembles. Specifically, we first analyze the standard random coding ensemble, where the codebooks are comprised of independently and identically distributed (i.i.d.) codewords. For this ensemble, we focus on optimum decoding, which is in contrast to other, suboptimal decoding rules that have been used in the literature (e.g., joint typicality decoding, treating interference as noise, etc.). The fact that the interfering signal is a codeword, rather than an i.i.d. noise process, complicates the application of conventional techniques of performance analysis of the optimum decoder. Also, unfortunately, these conventional techniques result in loose bounds. Using analytical tools rooted in statistical physics, as well as advanced union bounds, we derive single-letter formulas for the random coding error exponents. We compare our results with the best known lower bound on the error exponent, and show that our exponents can be strictly better. Then, in the second part of this paper, we consider more complicated coding ensembles, and find a lower bound on the error exponent associated with the celebrated Han-Kobayashi (HK) random coding ensemble, which is based on superposition coding.Comment: accepted IEEE Transactions on Information Theor
    • …
    corecore