13,909 research outputs found

    Lower Bounds on Exponential Moments of the Quadratic Error in Parameter Estimation

    Full text link
    Considering the problem of risk-sensitive parameter estimation, we propose a fairly wide family of lower bounds on the exponential moments of the quadratic error, both in the Bayesian and the non--Bayesian regime. This family of bounds, which is based on a change of measures, offers considerable freedom in the choice of the reference measure, and our efforts are devoted to explore this freedom to a certain extent. Our focus is mostly on signal models that are relevant to communication problems, namely, models of a parameter-dependent signal (modulated signal) corrupted by additive white Gaussian noise, but the methodology proposed is also applicable to other types of parametric families, such as models of linear systems driven by random input signals (white noise, in most cases), and others. In addition to the well known motivations of the risk-sensitive cost function (i.e., the exponential quadratic cost function), which is most notably, the robustness to model uncertainty, we also view this cost function as a tool for studying fundamental limits concerning the tail behavior of the estimation error. Another interesting aspect, that we demonstrate in a certain parametric model, is that the risk-sensitive cost function may be subjected to phase transitions, owing to some analogies with statistical mechanics.Comment: 28 pages; 4 figures; submitted for publicatio

    Adaptive Huber Regression

    Get PDF
    Big data can easily be contaminated by outliers or contain variables with heavy-tailed distributions, which makes many conventional methods inadequate. To address this challenge, we propose the adaptive Huber regression for robust estimation and inference. The key observation is that the robustification parameter should adapt to the sample size, dimension and moments for optimal tradeoff between bias and robustness. Our theoretical framework deals with heavy-tailed distributions with bounded (1+δ)(1+\delta)-th moment for any δ>0\delta > 0. We establish a sharp phase transition for robust estimation of regression parameters in both low and high dimensions: when δ≥1\delta \geq 1, the estimator admits a sub-Gaussian-type deviation bound without sub-Gaussian assumptions on the data, while only a slower rate is available in the regime 0<δ<10<\delta< 1. Furthermore, this transition is smooth and optimal. In addition, we extend the methodology to allow both heavy-tailed predictors and observation noise. Simulation studies lend further support to the theory. In a genetic study of cancer cell lines that exhibit heavy-tailedness, the proposed methods are shown to be more robust and predictive.Comment: final versio
    • …
    corecore