1,376 research outputs found

    Lower Bounds on Black-Box Reductions of Hitting to Density Estimation

    Get PDF
    Consider a deterministic algorithm that tries to find a string in an unknown set Ssubseteq{0,1}^n, under the promise that S has large density. The only information that the algorithm can obtain about S is estimates of the density of S in adaptively chosen subsets of {0,1}^n, up to an additive error of mu>0. This problem is appealing as a derandomization problem, when S is the set of satisfying inputs for a circuit C:{0,1}^n->{0,1} that accepts many inputs: In this context, an algorithm as above constitutes a deterministic black-box reduction of the problem of hitting C (i.e., finding a satisfying input for C) to the problem of approximately counting the number of satisfying inputs for C on subsets of {0,1}^n. We prove tight lower bounds for this problem, demonstrating that naive approaches to solve the problem cannot be improved upon, in general. First, we show a tight trade-off between the estimation error mu and the required number of queries to solve the problem: When mu=O(log(n)/n) a polynomial number of queries suffices, and when mu>=(4log(n)/n) the required number of queries is 2^{Theta(mu cdot n)}. Secondly, we show that the problem "resists" parallelization: Any algorithm that works in iterations, and can obtain p=p(n) density estimates "in parallel" in each iteration, still requires Omega( frac{n}{log(p)+log(1/mu)} ) iterations to solve the problem. This work extends the well-known work of Karp, Upfal, and Wigderson (1988), who studied the setting in which S is only guaranteed to be non-empty (rather than dense), and the algorithm can only probe subsets for the existence of a solution in them. In addition, our lower bound on parallel algorithms affirms a weak version of a conjecture of Motwani, Naor, and Naor (1994); we also make progress on a stronger version of their conjecture

    Geometric Inhomogeneous Random Graphs for Algorithm Engineering

    Get PDF
    The design and analysis of graph algorithms is heavily based on the worst case. In practice, however, many algorithms perform much better than the worst case would suggest. Furthermore, various problems can be tackled more efficiently if one assumes the input to be, in a sense, realistic. The field of network science, which studies the structure and emergence of real-world networks, identifies locality and heterogeneity as two frequently occurring properties. A popular model that captures these properties are geometric inhomogeneous random graphs (GIRGs), which is a generalization of hyperbolic random graphs (HRGs). Aside from their importance to network science, GIRGs can be an immensely valuable tool in algorithm engineering. Since they convincingly mimic real-world networks, guarantees about quality and performance of an algorithm on instances of the model can be transferred to real-world applications. They have model parameters to control the amount of heterogeneity and locality, which allows to evaluate those properties in isolation while keeping the rest fixed. Moreover, they can be efficiently generated which allows for experimental analysis. While realistic instances are often rare, generated instances are readily available. Furthermore, the underlying geometry of GIRGs helps to visualize the network, e.g.,~for debugging or to improve understanding of its structure. The aim of this work is to demonstrate the capabilities of geometric inhomogeneous random graphs in algorithm engineering and establish them as routine tools to replace previous models like the Erd\H{o}s-R{\\u27e}nyi model, where each edge exists with equal probability. We utilize geometric inhomogeneous random graphs to design, evaluate, and optimize efficient algorithms for realistic inputs. In detail, we provide the currently fastest sequential generator for GIRGs and HRGs and describe algorithms for maximum flow, directed spanning arborescence, cluster editing, and hitting set. For all four problems, our implementations beat the state-of-the-art on realistic inputs. On top of providing crucial benchmark instances, GIRGs allow us to obtain valuable insights. Most notably, our efficient generator allows us to experimentally show sublinear running time of our flow algorithm, investigate the solution structure of cluster editing, complement our benchmark set of arborescence instances with a density for which there are no real-world networks available, and generate networks with adjustable locality and heterogeneity to reveal the effects of these properties on our algorithms

    The Power Of Quantum Walk Insights, Implementation, And Applications

    Get PDF
    In this thesis, I investigate quantum walks in quantum computing from three aspects: the insights, the implementation, and the applications. Quantum walks are the quantum analogue of classical random walks. For the insights of quantum walks, I list and explain the required components for quantizing a classical random walk into a quantum walk. The components are, for instance, Markov chains, quantum phase estimation, and quantum spectrum theorem. I then demonstrate how the product of two reflections in the walk operator provides a quadratic speed-up, in comparison to the classical counterpart. For the implementation of quantum walks, I show the construction of an efficient circuit for realizing one single step of the quantum walk operator. Furthermore, I devise a more succinct circuit to approximately implement quantum phase estimation with constant precision controlled phase shift operators. From an implementation perspective, efficient circuits are always desirable because the realization of a phase shift operator with high precision would be a costly task and a critical obstacle. For the applications of quantum walks, I apply the quantum walk technique along with other fundamental quantum techniques, such as phase estimation, to solve the partition function problem. However, there might be some scenario in which the speed-up of spectral gap is insignificant. In a situation like that that, I provide an amplitude amplification-based iii approach to prepare the thermal Gibbs state. Such an approach is useful when the spectral gap is extremely small. Finally, I further investigate and explore the effect of noise (perturbation) on the performance of quantum walk

    Hitting Sets Give Two-Sided Derandomization of Small Space

    Get PDF

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    • …
    corecore