9,777 research outputs found

    Sum-factorization techniques in Isogeometric Analysis

    Full text link
    The fast assembling of stiffness and mass matrices is a key issue in isogeometric analysis, particularly if the spline degree is increased. We present two algorithms based on the idea of sum factorization, one for matrix assembling and one for matrix-free methods, and study the behavior of their computational complexity in terms of the spline order pp. Opposed to the standard approach, these algorithms do not apply the idea element-wise, but globally or on macro-elements. If this approach is applied to Gauss quadrature, the computational complexity grows as pd+2p^{d+2} instead of p2d+1p^{2d+1} as previously achieved.Comment: 34 pages, 8 figure

    Surface Networks

    Full text link
    We study data-driven representations for three-dimensional triangle meshes, which are one of the prevalent objects used to represent 3D geometry. Recent works have developed models that exploit the intrinsic geometry of manifolds and graphs, namely the Graph Neural Networks (GNNs) and its spectral variants, which learn from the local metric tensor via the Laplacian operator. Despite offering excellent sample complexity and built-in invariances, intrinsic geometry alone is invariant to isometric deformations, making it unsuitable for many applications. To overcome this limitation, we propose several upgrades to GNNs to leverage extrinsic differential geometry properties of three-dimensional surfaces, increasing its modeling power. In particular, we propose to exploit the Dirac operator, whose spectrum detects principal curvature directions --- this is in stark contrast with the classical Laplace operator, which directly measures mean curvature. We coin the resulting models \emph{Surface Networks (SN)}. We prove that these models define shape representations that are stable to deformation and to discretization, and we demonstrate the efficiency and versatility of SNs on two challenging tasks: temporal prediction of mesh deformations under non-linear dynamics and generative models using a variational autoencoder framework with encoders/decoders given by SNs

    Hierarchical interpolative factorization for elliptic operators: integral equations

    Full text link
    This paper introduces the hierarchical interpolative factorization for integral equations (HIF-IE) associated with elliptic problems in two and three dimensions. This factorization takes the form of an approximate generalized LU decomposition that permits the efficient application of the discretized operator and its inverse. HIF-IE is based on the recursive skeletonization algorithm but incorporates a novel combination of two key features: (1) a matrix factorization framework for sparsifying structured dense matrices and (2) a recursive dimensional reduction strategy to decrease the cost. Thus, higher-dimensional problems are effectively mapped to one dimension, and we conjecture that constructing, applying, and inverting the factorization all have linear or quasilinear complexity. Numerical experiments support this claim and further demonstrate the performance of our algorithm as a generalized fast multipole method, direct solver, and preconditioner. HIF-IE is compatible with geometric adaptivity and can handle both boundary and volume problems. MATLAB codes are freely available.Comment: 39 pages, 14 figures, 13 tables; to appear, Comm. Pure Appl. Mat

    The diameter of KPKVB random graphs

    Full text link
    We consider a model for complex networks that was recently proposed as a model for complex networks by Krioukov et al. In this model, nodes are chosen randomly inside a disk in the hyperbolic plane and two nodes are connected if they are at most a certain hyperbolic distance from each other. It has been previously shown that this model has various properties associated with complex networks, including a power-law degree distribution and a strictly positive clustering coefficient. The model is specified using three parameters : the number of nodes NN, which we think of as going to infinity, and α,Îœ>0\alpha, \nu > 0 which we think of as constant. Roughly speaking α\alpha controls the power law exponent of the degree sequence and Îœ\nu the average degree. Earlier work of Kiwi and Mitsche has shown that when α<1\alpha < 1 (which corresponds to the exponent of the power law degree sequence being <3< 3) then the diameter of the largest component is a.a.s.~polylogarithmic in NN. Friedrich and Krohmer have shown it is a.a.s.~Ω(log⁥N)\Omega(\log N) and they improved the exponent of the polynomial in log⁥N\log N in the upper bound. Here we show the maximum diameter over all components is a.a.s.~O(log⁥N)O(\log N) thus giving a bound that is tight up to a multiplicative constant.Comment: very minor corrections since the last versio
    • 

    corecore