3,408 research outputs found

    Average-Case Lower Bounds for Noisy Boolean Decision Trees

    Get PDF
    We present a new method for deriving lower bounds to the expected number of queries made by noisy decision trees computing Boolean functions. The new method has the feature that expectations are taken with respect to a uniformly distributed random input, as well as with respect to the random noise, thus yielding stronger lower bounds. It also applies to many more functions than do previous results. The method yields a simple proof of the result (previously established by Reischuk and Schmeltz) that almost all Boolean functions of n arguments require \Me(n \log n) queries, and strengthens this bound from the worst-case over inputs to the average over inputs. The method also yields bounds for specific Boolean functions in terms of their spectra (their Fourier transforms). The simplest instance of this spectral bound yields the result (previously established by Feige, Peleg, Raghavan, and Upfal) that the parity function of n arguments requires \Me(n \log n) queries and again strengthens this bound from the worst-case over inputs to the average over inputs. In its full generality, the spectral bound applies to the highly resilient functions introduced by Chor, Friedman, Goldreich, Hastad, Rudich, and Smolensky, and it yields nonlinear lower bounds whenever the resiliency is asymptotic to the number of arguments

    Information Theory and Noisy Computation

    Get PDF
    We report on two types of results. The first is a study of the rate of decay of information carried by a signal which is being propagated over a noisy channel. The second is a series of lower bounds on the depth, size, and component reliability of noisy logic circuits which are required to compute some function reliably. The arguments used for the circuit results are information-theoretic, and in particular, the signal decay result is essential to the depth lower bound. Our first result can be viewed as a quantified version of the data processing lemma, for the case of Boolean random variables

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Deterministic and Probabilistic Binary Search in Graphs

    Full text link
    We consider the following natural generalization of Binary Search: in a given undirected, positively weighted graph, one vertex is a target. The algorithm's task is to identify the target by adaptively querying vertices. In response to querying a node qq, the algorithm learns either that qq is the target, or is given an edge out of qq that lies on a shortest path from qq to the target. We study this problem in a general noisy model in which each query independently receives a correct answer with probability p>12p > \frac{1}{2} (a known constant), and an (adversarial) incorrect one with probability 1p1-p. Our main positive result is that when p=1p = 1 (i.e., all answers are correct), log2n\log_2 n queries are always sufficient. For general pp, we give an (almost information-theoretically optimal) algorithm that uses, in expectation, no more than (1δ)log2n1H(p)+o(logn)+O(log2(1/δ))(1 - \delta)\frac{\log_2 n}{1 - H(p)} + o(\log n) + O(\log^2 (1/\delta)) queries, and identifies the target correctly with probability at leas 1δ1-\delta. Here, H(p)=(plogp+(1p)log(1p))H(p) = -(p \log p + (1-p) \log(1-p)) denotes the entropy. The first bound is achieved by the algorithm that iteratively queries a 1-median of the nodes not ruled out yet; the second bound by careful repeated invocations of a multiplicative weights algorithm. Even for p=1p = 1, we show several hardness results for the problem of determining whether a target can be found using KK queries. Our upper bound of log2n\log_2 n implies a quasipolynomial-time algorithm for undirected connected graphs; we show that this is best-possible under the Strong Exponential Time Hypothesis (SETH). Furthermore, for directed graphs, or for undirected graphs with non-uniform node querying costs, the problem is PSPACE-complete. For a semi-adaptive version, in which one may query rr nodes each in kk rounds, we show membership in Σ2k1\Sigma_{2k-1} in the polynomial hierarchy, and hardness for Σ2k5\Sigma_{2k-5}

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE

    Broadcasting on Random Directed Acyclic Graphs

    Full text link
    We study a generalization of the well-known model of broadcasting on trees. Consider a directed acyclic graph (DAG) with a unique source vertex XX, and suppose all other vertices have indegree d2d\geq 2. Let the vertices at distance kk from XX be called layer kk. At layer 00, XX is given a random bit. At layer k1k\geq 1, each vertex receives dd bits from its parents in layer k1k-1, which are transmitted along independent binary symmetric channel edges, and combines them using a dd-ary Boolean processing function. The goal is to reconstruct XX with probability of error bounded away from 1/21/2 using the values of all vertices at an arbitrarily deep layer. This question is closely related to models of reliable computation and storage, and information flow in biological networks. In this paper, we analyze randomly constructed DAGs, for which we show that broadcasting is only possible if the noise level is below a certain degree and function dependent critical threshold. For d3d\geq 3, and random DAGs with layer sizes Ω(logk)\Omega(\log k) and majority processing functions, we identify the critical threshold. For d=2d=2, we establish a similar result for NAND processing functions. We also prove a partial converse for odd d3d\geq 3 illustrating that the identified thresholds are impossible to improve by selecting different processing functions if the decoder is restricted to using a single vertex. Finally, for any noise level, we construct explicit DAGs (using expander graphs) with bounded degree and layer sizes Θ(logk)\Theta(\log k) admitting reconstruction. In particular, we show that such DAGs can be generated in deterministic quasi-polynomial time or randomized polylogarithmic time in the depth. These results portray a doubly-exponential advantage for storing a bit in DAGs compared to trees, where d=1d=1 but layer sizes must grow exponentially with depth in order to enable broadcasting.Comment: 33 pages, double column format. arXiv admin note: text overlap with arXiv:1803.0752

    Learning using Local Membership Queries

    Full text link
    We introduce a new model of membership query (MQ) learning, where the learning algorithm is restricted to query points that are \emph{close} to random examples drawn from the underlying distribution. The learning model is intermediate between the PAC model (Valiant, 1984) and the PAC+MQ model (where the queries are allowed to be arbitrary points). Membership query algorithms are not popular among machine learning practitioners. Apart from the obvious difficulty of adaptively querying labelers, it has also been observed that querying \emph{unnatural} points leads to increased noise from human labelers (Lang and Baum, 1992). This motivates our study of learning algorithms that make queries that are close to examples generated from the data distribution. We restrict our attention to functions defined on the nn-dimensional Boolean hypercube and say that a membership query is local if its Hamming distance from some example in the (random) training data is at most O(log(n))O(\log(n)). We show the following results in this model: (i) The class of sparse polynomials (with coefficients in R) over {0,1}n\{0,1\}^n is polynomial time learnable under a large class of \emph{locally smooth} distributions using O(log(n))O(\log(n))-local queries. This class also includes the class of O(log(n))O(\log(n))-depth decision trees. (ii) The class of polynomial-sized decision trees is polynomial time learnable under product distributions using O(log(n))O(\log(n))-local queries. (iii) The class of polynomial size DNF formulas is learnable under the uniform distribution using O(log(n))O(\log(n))-local queries in time nO(log(log(n)))n^{O(\log(\log(n)))}. (iv) In addition we prove a number of results relating the proposed model to the traditional PAC model and the PAC+MQ model
    corecore