2,587 research outputs found

    Depth Reduction for Circuits with a Single Layer of Modular Counting Gates

    Get PDF
    We consider the class of constant depth AND/OR circuits augmented with a layer of modular counting gates at the bottom layer, i.e AC0circMODm{AC}^0 circ {MOD}_m circuits. We show that the following holds for several types of gates GG: by adding a gate of type GG at the output, it is possible to obtain an equivalent randomized depth 2 circuit of quasipolynomial size consisting of a gate of type GG at the output and a layer of modular counting gates, i.e GcircMODmG circ {MOD}_m circuits. The types of gates GG we consider are modular counting gates and threshold-style gates. For all of these, strong lower bounds are known for (deterministic) GcircMODmG circ {MOD}_m circuits

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    Intermediate problems in modular circuits satisfiability

    Full text link
    In arXiv:1710.08163 a generalization of Boolean circuits to arbitrary finite algebras had been introduced and applied to sketch P versus NP-complete borderline for circuits satisfiability over algebras from congruence modular varieties. However the problem for nilpotent (which had not been shown to be NP-hard) but not supernilpotent algebras (which had been shown to be polynomial time) remained open. In this paper we provide a broad class of examples, lying in this grey area, and show that, under the Exponential Time Hypothesis and Strong Exponential Size Hypothesis (saying that Boolean circuits need exponentially many modular counting gates to produce boolean conjunctions of any arity), satisfiability over these algebras have intermediate complexity between Ω(2clogh1n)\Omega(2^{c\log^{h-1} n}) and O(2cloghn)O(2^{c\log^h n}), where hh measures how much a nilpotent algebra fails to be supernilpotent. We also sketch how these examples could be used as paradigms to fill the nilpotent versus supernilpotent gap in general. Our examples are striking in view of the natural strong connections between circuits satisfiability and Constraint Satisfaction Problem for which the dichotomy had been shown by Bulatov and Zhuk

    CC-circuits and the expressive power of nilpotent algebras

    Full text link
    We show that CC-circuits of bounded depth have the same expressive power as polynomials over finite nilpotent algebras from congruence modular varieties. We use this result to phrase and discuss an algebraic version of Barrington, Straubing and Th\'erien's conjecture, which states that CC-circuits of bounded depth need exponential size to compute AND. Furthermore we investigate the complexity of deciding identities and solving equations in a fixed nilpotent algebra. Under the assumption that the conjecture is true, we obtain quasipolynomial algorithms for both problems. On the other hand, if AND is computable by uniform CC-circuits of bounded depth and polynomial size, we can construct a nilpotent algebra with coNP-complete, respectively NP-complete problem.Comment: 14 page

    08381 Abstracts Collection -- Computational Complexity of Discrete Problems

    Get PDF
    From the 14th of September to the 19th of September, the Dagstuhl Seminar 08381 ``Computational Complexity of Discrete Problems\u27\u27 was held in Schloss Dagstuhl - Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work as well as open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this report. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore