36,663 research outputs found

    Fast Deterministic Fully Dynamic Distance Approximation

    Full text link
    In this paper, we develop deterministic fully dynamic algorithms for computing approximate distances in a graph with worst-case update time guarantees. In particular, we obtain improved dynamic algorithms that, given an unweighted and undirected graph G=(V,E)G=(V,E) undergoing edge insertions and deletions, and a parameter 0<ϵ≤1 0 < \epsilon \leq 1 , maintain (1+ϵ)(1+\epsilon)-approximations of the stst-distance between a given pair of nodes s s and t t , the distances from a single source to all nodes ("SSSP"), the distances from multiple sources to all nodes ("MSSP"), or the distances between all nodes ("APSP"). Our main result is a deterministic algorithm for maintaining (1+ϵ)(1+\epsilon)-approximate stst-distance with worst-case update time O(n1.407)O(n^{1.407}) (for the current best known bound on the matrix multiplication exponent ω\omega). This even improves upon the fastest known randomized algorithm for this problem. Similar to several other well-studied dynamic problems whose state-of-the-art worst-case update time is O(n1.407)O(n^{1.407}), this matches a conditional lower bound [BNS, FOCS 2019]. We further give a deterministic algorithm for maintaining (1+ϵ)(1+\epsilon)-approximate single-source distances with worst-case update time O(n1.529)O(n^{1.529}), which also matches a conditional lower bound. At the core, our approach is to combine algebraic distance maintenance data structures with near-additive emulator constructions. This also leads to novel dynamic algorithms for maintaining (1+ϵ,β)(1+\epsilon, \beta)-emulators that improve upon the state of the art, which might be of independent interest. Our techniques also lead to improved randomized algorithms for several problems such as exact stst-distances and diameter approximation.Comment: Changes to the previous version: improved bounds for approximate st distances using new algebraic data structure

    Performance bounds for optimal feedback control in networks

    Full text link
    Many important complex networks, including critical infrastructure and emerging industrial automation systems, are becoming increasingly intricate webs of interacting feedback control loops. A fundamental concern is to quantify the control properties and performance limitations of the network as a function of its dynamical structure and control architecture. We study performance bounds for networks in terms of optimal feedback control costs. We provide a set of complementary bounds as a function of the system dynamics and actuator structure. For unstable network dynamics, we characterize a tradeoff between feedback control performance and the number of control inputs, in particular showing that optimal cost can increase exponentially with the size of the network. We also derive a bound on the performance of the worst-case actuator subset for stable networks, providing insight into dynamics properties that affect the potential efficacy of actuator selection. We illustrate our results with numerical experiments that analyze performance in regular and random networks

    Non-constructive interval simulation of dynamic systems

    Get PDF
    Publisher PD
    • …
    corecore