8,957 research outputs found

    Circuit Lower Bounds, Help Functions, and the Remote Point Problem

    Full text link
    We investigate the power of Algebraic Branching Programs (ABPs) augmented with help polynomials, and constant-depth Boolean circuits augmented with help functions. We relate the problem of proving explicit lower bounds in both these models to the Remote Point Problem (introduced by Alon, Panigrahy, and Yekhanin (RANDOM '09)). More precisely, proving lower bounds for ABPs with help polynomials is related to the Remote Point Problem w.r.t. the rank metric, and for constant-depth circuits with help functions it is related to the Remote Point Problem w.r.t. the Hamming metric. For algebraic branching programs with help polynomials with some degree restrictions we show exponential size lower bounds for explicit polynomials

    Noise threshold for universality of 2-input gates

    Get PDF
    Evans and Pippenger showed in 1998 that noisy gates with 2 inputs are universal for arbitrary computation (i.e. can compute any function with bounded error), if all gates fail independently with probability epsilon and epsilon<theta, where theta is roughly 8.856%. We show that formulas built from gates with 2 inputs, in which each gate fails with probability at least theta cannot be universal. Hence, there is a threshold on the tolerable noise for formulas with 2-input gates and it is theta. We conjecture that the same threshold also holds for circuits.Comment: International Symposium on Information Theory, 2007, minor corrections in v

    NP-hardness of circuit minimization for multi-output functions

    Get PDF
    Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an explicitly given function is NP-complete. While this is known to hold in restricted models such as DNFs, making progress with respect to more expressive classes of circuits has been elusive. In this work, we establish the first NP-hardness result for circuit minimization of total functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the minimum circuit size of a given multi-output Boolean function f : {0,1}^n ? {0,1}^m is NP-hard under many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output) Boolean functions under an extended set of generators. Complementing these results, we investigate the computational hardness of minimizing communication. We establish that several variants of this problem are NP-hard under deterministic reductions. In particular, unless ? = ??, no polynomial-time computable function can approximate the deterministic two-party communication complexity of a partial Boolean function up to a polynomial. This has consequences for the class of structural results that one might hope to show about the communication complexity of partial functions

    The Value of Help Bits in Randomized and Average-Case Complexity

    Full text link
    "Help bits" are some limited trusted information about an instance or instances of a computational problem that may reduce the computational complexity of solving that instance or instances. In this paper, we study the value of help bits in the settings of randomized and average-case complexity. Amir, Beigel, and Gasarch (1990) show that for constant kk, if kk instances of a decision problem can be efficiently solved using less than kk bits of help, then the problem is in P/poly. We extend this result to the setting of randomized computation: We show that the decision problem is in P/poly if using \ell help bits, kk instances of the problem can be efficiently solved with probability greater than 2k2^{\ell-k}. The same result holds if using less than k(1h(α))k(1 - h(\alpha)) help bits (where h()h(\cdot) is the binary entropy function), we can efficiently solve (1α)(1-\alpha) fraction of the instances correctly with non-vanishing probability. We also extend these two results to non-constant but logarithmic kk. In this case however, instead of showing that the problem is in P/poly we show that it satisfies "kk-membership comparability," a notion known to be related to solving kk instances using less than kk bits of help. Next we consider the setting of average-case complexity: Assume that we can solve kk instances of a decision problem using some help bits whose entropy is less than kk when the kk instances are drawn independently from a particular distribution. Then we can efficiently solve an instance drawn from that distribution with probability better than 1/21/2. Finally, we show that in the case where kk is super-logarithmic, assuming kk-membership comparability of a decision problem, one cannot prove that the problem is in P/poly by a "black-box proof.

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling

    Full text link
    A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. An important class of distance labeling schemes is that of hub labelings, where a node vGv \in G stores its distance to the so-called hubs SvVS_v \subseteq V, chosen so that for any u,vVu,v \in V there is wSuSvw \in S_u \cap S_v belonging to some shortest uvuv path. Notice that for most existing graph classes, the best distance labelling constructions existing use at some point a hub labeling scheme at least as a key building block. Our interest lies in hub labelings of sparse graphs, i.e., those with E(G)=O(n)|E(G)| = O(n), for which we show a lowerbound of n2O(logn)\frac{n}{2^{O(\sqrt{\log n})}} for the average size of the hubsets. Additionally, we show a hub-labeling construction for sparse graphs of average size O(nRS(n)c)O(\frac{n}{RS(n)^{c}}) for some 0<c<10 < c < 1, where RS(n)RS(n) is the so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced matchings in dense graphs. This implies that further improving the lower bound on hub labeling size to n2(logn)o(1)\frac{n}{2^{(\log n)^{o(1)}}} would require a breakthrough in the study of lower bounds on RS(n)RS(n), which have resisted substantial improvement in the last 70 years. For general distance labeling of sparse graphs, we show a lowerbound of 12O(logn)SumIndex(n)\frac{1}{2^{O(\sqrt{\log n})}} SumIndex(n), where SumIndex(n)SumIndex(n) is the communication complexity of the Sum-Index problem over ZnZ_n. Our results suggest that the best achievable hub-label size and distance-label size in sparse graphs may be Θ(n2(logn)c)\Theta(\frac{n}{2^{(\log n)^c}}) for some 0<c<10<c < 1
    corecore