8,323 research outputs found

    Kolmogorov Complexity in perspective. Part I: Information Theory and Randomnes

    Get PDF
    We survey diverse approaches to the notion of information: from Shannon entropy to Kolmogorov complexity. Two of the main applications of Kolmogorov complexity are presented: randomness and classification. The survey is divided in two parts in the same volume. Part I is dedicated to information theory and the mathematical formalization of randomness based on Kolmogorov complexity. This last application goes back to the 60's and 70's with the work of Martin-L\"of, Schnorr, Chaitin, Levin, and has gained new impetus in the last years.Comment: 40 page

    Optimal Staged Self-Assembly of General Shapes

    Get PDF
    We analyze the number of tile types tt, bins bb, and stages necessary to assemble n×nn \times n squares and scaled shapes in the staged tile assembly model. For n×nn \times n squares, we prove O(logntbtlogtb2+loglogblogt)\mathcal{O}(\frac{\log{n} - tb - t\log t}{b^2} + \frac{\log \log b}{\log t}) stages suffice and Ω(logntbtlogtb2)\Omega(\frac{\log{n} - tb - t\log t}{b^2}) are necessary for almost all nn. For shapes SS with Kolmogorov complexity K(S)K(S), we prove O(K(S)tbtlogtb2+loglogblogt)\mathcal{O}(\frac{K(S) - tb - t\log t}{b^2} + \frac{\log \log b}{\log t}) stages suffice and Ω(K(S)tbtlogtb2)\Omega(\frac{K(S) - tb - t\log t}{b^2}) are necessary to assemble a scaled version of SS, for almost all SS. We obtain similarly tight bounds when the more powerful flexible glues are permitted.Comment: Abstract version appeared in ESA 201

    Average-Case Complexity of Shellsort

    Full text link
    We prove a general lower bound on the average-case complexity of Shellsort: the average number of data-movements (and comparisons) made by a pp-pass Shellsort for any incremental sequence is \Omega (pn^{1 + 1/p) for all plognp \leq \log n. Using similar arguments, we analyze the average-case complexity of several other sorting algorithms.Comment: 11 pages. Submitted to ICALP'9

    Reversibility and Adiabatic Computation: Trading Time and Space for Energy

    Get PDF
    Future miniaturization and mobilization of computing devices requires energy parsimonious `adiabatic' computation. This is contingent on logical reversibility of computation. An example is the idea of quantum computations which are reversible except for the irreversible observation steps. We propose to study quantitatively the exchange of computational resources like time and space for irreversibility in computations. Reversible simulations of irreversible computations are memory intensive. Such (polynomial time) simulations are analysed here in terms of `reversible' pebble games. We show that Bennett's pebbling strategy uses least additional space for the greatest number of simulated steps. We derive a trade-off for storage space versus irreversible erasure. Next we consider reversible computation itself. An alternative proof is provided for the precise expression of the ultimate irreversibility cost of an otherwise reversible computation without restrictions on time and space use. A time-irreversibility trade-off hierarchy in the exponential time region is exhibited. Finally, extreme time-irreversibility trade-offs for reversible computations in the thoroughly unrealistic range of computable versus noncomputable time-bounds are given.Comment: 30 pages, Latex. Lemma 2.3 should be replaced by the slightly better ``There is a winning strategy with n+2n+2 pebbles and m1m-1 erasures for pebble games GG with TG=m2nT_G= m2^n, for all m1m \geq 1'' with appropriate further changes (as pointed out by Wim van Dam). This and further work on reversible simulations as in Section 2 appears in quant-ph/970300
    corecore