73 research outputs found

    Low Voltage Floating Gate MOS Transistor Based Four-Quadrant Multiplier

    Get PDF
    This paper presents a four-quadrant multiplier based on square-law characteristic of floating gate MOSFET (FGMOS) in saturation region. The proposed circuit uses square-difference identity and the differential voltage squarer proposed by Gupta et al. to implement the multiplication function. The proposed multiplier employs eight FGMOS transistors and two resistors only. The FGMOS implementation of the multiplier allows low voltage operation, reduced power consumption and minimum transistor count. The second order effects caused due to mobility degradation, component mismatch and temperature variations are discussed. Performance of the proposed circuit is verified at ±0.75 V in TSMC 0.18 µm CMOS, BSIM3 and Level 49 technology by using Cadence Spectre simulator

    FGMOS Based Voltage-Controlled Grounded Resistor

    Get PDF
    This paper proposes a new floating gate MOSFET (FGMOS) based voltage-controlled grounded resistor. In the proposed circuit FGMOS operating in the ohmic region is linearized by another conventional MOSFET operating in the saturation region. The major advantages of FGMOS based voltage-controlled grounded resistor (FGVCGR) are simplicity, low total harmonic distortion (THD), and low power consumption. A simple application of this FGVCGR as a tunable high-pass filter is also suggested. The proposed circuits operate at the supply voltages of +/-0.75 V. The circuits are designed and simulated using SPICE in 0.25-µm CMOS technology. The simulation results of FGVCGR demonstrate a THD of 0.28% for the input signal 0.32 Vpp at 45 kHz, and a maximum power consumption of 254 µW

    A practical floating-gate Muller-C element using vMOS threshold gates

    Get PDF
    This paper presents the rationale for vMOS-based realizations of digital circuits when logic design techniques based on threshold logic gates are used. Some practical problems in the vMOS implementation of threshold gates have been identified and solved. The feasibility and versatility of the proposed technique as well as its potential as a low-cost design technique for CMOS technologies have been shown by experimental results from a multiple-input Muller C-element. The proposed new realization exhibits better performance related to delay and area and power consumption than the traditional logic implementation

    Power-efficient current-mode analog circuits for highly integrated ultra low power wireless transceivers

    Get PDF
    In this thesis, current-mode low-voltage and low-power techniques have been applied to implement novel analog circuits for zero-IF receiver backend design, focusing on amplification, filtering and detection stages. The structure of the thesis follows a bottom-up scheme: basic techniques at device level for low voltage low power operation are proposed in the first place, followed by novel circuit topologies at cell level, and finally the achievement of new designs at system level. At device level the main contribution of this work is the employment of Floating-Gate (FG) and Quasi-Floating-Gate (QFG) transistors in order to reduce the power consumption. New current-mode basic topologies are proposed at cell level: current mirrors and current conveyors. Different topologies for low-power or high performance operation are shown, being these circuits the base for the system level designs. At system level, novel current-mode amplification, filtering and detection stages using the former mentioned basic cells are proposed. The presented current-mode filter makes use of companding techniques to achieve high dynamic range and very low power consumption with for a very wide tuning range. The amplification stage avoids gain bandwidth product achieving a constant bandwidth for different gain configurations using a non-linear active feedback network, which also makes possible to tune the bandwidth. Finally, the proposed current zero-crossing detector represents a very power efficient mixed signal detector for phase modulations. All these designs contribute to the design of very low power compact Zero-IF wireless receivers. The proposed circuits have been fabricated using a 0.5ÎĽm double-poly n-well CMOS technology, and the corresponding measurement results are provided and analyzed to validate their operation. On top of that, theoretical analysis has been done to fully explore the potential of the resulting circuits and systems in the scenario of low-power low-voltage applications.Programa Oficial de Doctorado en TecnologĂ­as de las Comunicaciones (RD 1393/2007)Komunikazioen Teknologietako Doktoretza Programa Ofiziala (ED 1393/2007

    A 1.25V FGMOS Filter Using Translinear Circuits

    Get PDF
    This paper presents a new low voltage/low power filter design based on Floating-Gate MOS (FGMOS) transistors. FGMOS transistors are used as primitives to design linear and non-linear (/spl radic/x) circuits. This technique enables a voltage reduction in strong inversion mode, and gives a new vision of the translinear principle, suitable for low voltage applications. Experimental results for 0.8 /spl mu/m low-pass and band-pass filter prototypes are reported

    A micropower log domain FGMOS filter

    Get PDF
    In this paper, a CMOS implementation of a low voltage micropower logarithmic biquad based on floating gate MOS transistors (FGMOS) is presented. The translinear principle applied to the floating gate MOS transistor leads to an easy implementation of the state-space equations without using the source terminal in the loop. The voltage supply can be reduced and also there is no need of separate wells. The technique is proven in this low/band pass filter working at 1 V with a maximum power consumption of 2 /spl mu/W. The filter parameters can be adjusted in more than two decades, being the upper frequency around 150 kHz

    Rail-to-rail class AB CMOS tunable transconductor with -52dB IM3 at 1MHz

    Get PDF
    A novel CMOS tunable transconductor is presented. The circuit operates in classAB hence featuring power efficiency. The internal feedback employed and the use of a linearized triode transistor for voltage-to-current conversion allows achieving high linearity. Rail-to-rail input range is obtained by using floatinggate transistors. Measurement results for a test chip prototype in a 0.5µm standard CMOS process show an IM3 of -52.13dB at 1MHz for a 2Vpp input and a power consumption of 2.2mW

    A Parallel Programmer for Non-Volatile Analog Memory Arrays

    Get PDF
    Since their introduction in 1967, floating-gate transistors have enjoyed widespread success as non-volatile digital memory elements in EEPROM and flash memory. In recent decades, however, a renewed interest in floating-gate transistors has focused on their viability as non-volatile analog memory, as well as programmable voltage and current sources. They have been used extensively in this capacity to solve traditional problems associated with analog circuit design, such as to correct for fabrication mismatch, to reduce comparator offset, and for amplifier auto-zeroing. They have also been used to implement adaptive circuits, learning systems, and reconfigurable systems. Despite these applications, their proliferation has been limited by complex programming procedures, which typically require high-precision test equipment and intimate knowledge of the programmer circuit to perform.;This work strives to alleviate this limitation by presenting an improved method for fast and accurate programming of floating-gate transistors. This novel programming circuit uses a digital-to-analog converter and an array of sample-and-hold circuits to facilitate fast parallel programming of floating-gate memory arrays and eliminate the need for high accuracy voltage sources. Additionally, this circuit employs a serial peripheral interface which digitizes control of the programmer, simplifying the programming procedure and enabling the implementation of software applications that obscure programming complexity from the end user. The efficient and simple parallel programming system was fabricated in a 0.5?m standard CMOS process and will be used to demonstrate the effectiveness of this new method

    A tunable floating-gate CMOS transconductor based on current multiplication

    Get PDF
    In this paper a novel transconductor based on floating gate techniques that performs current multiplication for tuning is presented. The multiplication is achieved using transistors operating in weak and moderate inversion together with floating voltage sources implemented conveniently by floating capacitors. Besides, a tuning scheme is proposed to set the transconductance parameter accurately. The resulting circuit features compactness, low voltage operation, and rail-to-rail input range. Measurement and simulation results using a 0.5um CMOS technology are presented to confirm all the circuits and strategies proposed
    • …
    corecore