2 research outputs found

    Does a senescene-like phenotype in neurons contribute to brain ageing and neurodegeneration?

    Get PDF
    PhD ThesisSenescent cells accumulate in the body with age, and drive organismal ageing and tissue dysfunction. Senescence is not a simple growth arrest, but is accompanied by a host of phenotypic changes, including the generation of pro-inflammatory molecules, and is maintained by a network of auto- and paracrine reinforcement. Senescence is now also understood to occur in post-mitotic cells, including neurons – contrary to the former definition of senescence occurring exclusively in proliferating cells. This is called the senescent-like phenotype. While senescent cells can be seen to increase with age, little is known about their relation to cognitive function with age or pathological states such neuro-inflammation. Using a model of chronic inflammation, the nfkb1-/- mouse, I investigated neuro-inflammation, cognitive function and the frequency of senescent-like neurons with age and treatment with the COX-2 inhibitor ibuprofen. Increasing microglial proliferation and neuro-inflammation could be observed, together with deficits in spatial memory. This was accompanied by an increase in the numbers of senescent-like neurons. Increased accumulation of persistent DNA damage in pyramidal neurons, and a deficit in the generation and propagation of Carbachol induced gamma frequency oscillations, could be seen in the CA3. COX-2 appears to have a role in mediating these effects, as treatment with ibuprofen was effective in ameliorating levels of neuro-inflammation, cognitive dysfunction and senescent-like neurons. Ageing INK-ATTAC mice were given pharmacogenetic and pharmacological treatments to investigate if these could clear senescent-like neurons. Pharmacological clearance (Dasatinib and Quercetin) was effective in reducing the numbers of senescent like neurons, and these mice showed an improvement in cognitive function, while pharmacogenetic treatment had a lesser effect. The data presented in this thesis implicate the senescence and the senescent-like phenotype in neuro-inflammation and ageing, and in driving the accompanying declines in cognitive function
    corecore