645 research outputs found

    Copper Metal for Semiconductor Interconnects

    Get PDF
    Resistance-capacitance (RC) delay produced by the interconnects limits the speed of the integrated circuits from 0.25 mm technology node. Copper (Cu) had been used to replace aluminum (Al) as an interconnecting conductor in order to reduce the resistance. In this chapter, the deposition method of Cu films and the interconnect fabrication with Cu metallization are introduced. The resulting integration and reliability challenges are addressed as well

    Beam lead technology

    Get PDF
    Beam lead technology for microcircuit interconnections with applications to metallization, passivation, and bondin

    Materials, Processes, and Characterization of Extended Air-gaps for the Intra-level Interconnection of Integrated Circuits

    Get PDF
    Materials, Processes, and Characterization of Extended Air-gaps for the Intra-level Interconnection of Integrated Circuits Seongho Park 157 pages Directed by Dr. Paul A. Kohl and Dr. Sue Ann Bidstrup Allen The integration of an air-gap as an ultra low dielectric constant material in an intra-metal dielectric region of interconnect structure in integrated circuits was investigated in terms of material properties of a thermally decomposable sacrificial polymer, fabrication processes and electrical performance. Extension of the air-gap into the inter-layer dielectric region reduces the interconnect capacitance. In order to enhance the hardness of a polymer for the better process reliabilities, a conventional norbornene-based sacrificial polymer was electron-beam irradiated. Although the hardness of the polymer increased, the thermal properties degraded. A new high modulus tetracyclododecene-based sacrificial polymer was characterized and compared to the norbornene-based polymer in terms of hardness, process reliability and thermal properties. The tetracyclododecene-based polymer was harder and showed better process reliability than the norbornene-based sacrificial polymer. Using the tetracyclododecene-based sacrificial polymer, a single layer Cu/air-gap and extended Cu/air-gap structures were fabricated. The effective dielectric constant of the air-gap and extended air-gap structures were 2.42 and 2.17, respectively. This meets the requirements for the 32 nm node. Moisture uptake of the extended Cu/air-gap structure increased the effective dielectric constant. The exposure of the structure to hexamethyldisilazane vapor removed the absorbed moisture and changed the structure hydrophobic, improving the integration reliability. The integration processes of the air-gap and the extended air-gap into a dual damascene Cu metallization process has been proposed compared to state-of-the-art integration approaches.Ph.D.Committee Chair: Kohl, Paul A.; Committee Co-Chair: Allen, Sue Ann Bidstrup; Committee Member: Carter, W. Brent; Committee Member: Frazier, Albert B; Committee Member: Hess, Dennis; Committee Member: Meredith, Carso

    Low pressure chemical vapor deposition of boron nitride thin films from triethylamine borane complex and ammonia

    Get PDF
    Boron nitride thin films were synthesized on Silicon and quartz substrates by low pressure chemical vapor deposition using triethylamine-borane complex and ammonia as precursors. The films were processed at 550°C, 575°C and 600°C at a constant pressure of 0.05 Torr at different precursor flow rates and flow ratios. Several analytical methods such as Fourier transform infrared spectroscopy, x- ray photo-electron spectroscopy, ultra-violet/visible spectrophotornetry, ellipsometry, surface profilometry and scanning electron microscopy were used to study the deposited films. The films deposited were uniform, amorphous and the composition of the films varied with deposition temperature and precursor flow ratios. The stresses in the film were either mildly tensile or compressive. Dielectric constant characterization of LPCVD boron nitride was made using metal-insulator-semiconductor (MIS) and metal-insulator-metal (M IM) structures. The boron nitride films were stable and showed dielectric constant values between 3.8 and 4.7. The limitation of attaining lower values could be due to the presence of carbon as an impurity in the film and the presence of mobile charge carriers in the films as well as at the substrate-film interface

    TiN/HfO2/SiO2/Si gate stacks reliability : Contribution of HfO2 and interfacial SiO2 layer

    Get PDF
    Hafnium Oxide based gate stacks are considered to be the potential candidates to replace SiO2 in complementary metal-oxide-semiconductor (CMOS), as they reduce the gate leakage by over 100 times while keeping the device performance intact. Even though considerable performance improvement has been achieved, reliability of high-κ devices for the next generation of transistors (45nm and beyond) which has an interfacial layer (IL: typically SiO2) between high-κ and the substrate, needs to be investigated. To understand the breakdown mechanism of high-κ/SiO2 gate stack completely, it is important to study this multi-layer structure extensively. For example, (i) the role of SiO2 interfacial layers and bulk high-κ gate dielectrics without any interfacial layer can be investigated separately while maintaining same growth conditions; (ii) the evolution of breakdown process can be studied through stress induced leakage current (SILC); (iii) relationship of various degradation mechanisms such as negative bias temperature instability (NBTI) with that of the dielectric breakdown; and (iv) a fast evaluation process to estimate statistical breakdown distribution. In this dissertation a comparative study was conducted to investigate individual breakdown characteristics of high-κ/IL (ISSG SiO2)/metal gate stacks, in-situ steam generated (ISSG)-SiO2 MOS structures and HfO2-only metal-insulator-metal (MIM) capacitors. Experimental results indicate that after constant voltage stress (CVS) identical degradation for progressive breakdown and SILC were observed in high-κ/IL and SiO2-only MOS devices, but HfO2-only MIM capacitors showed insignificant SILC and progressive breakdown until it went into hard breakdown. Based on the observed SILC behavior and charge-to-breakdown (QBD), it was inferred that interfacial layer initiates progressive breakdown of metal gate/high-κ gate stacks at room temperature. From normalized SILC (ΔJg/Jg0) at accelerated temperature and activation energy of the timeto- breakdown (TBD), it was observed that IL initiates the gate stack breakdown at higher temperatures as well. A quantitative agreement was observed for key parameters of NBTI and time dependent dielectric breakdown (TDDB) such as the activation energies of threshold voltage change and SILC. The quality and thickness variation of the IL causes similar degradation on both NBTI and TDDB indicating that mechanism of these two reliability issues are related due to creation of identical defect types in the IL. CVS was used to investigate the statistical distribution of TBD, defined as soft or first breakdown where small sample size was considered. As TBD followed Weibull distribution, large sample size was not required. Since the failure process in static random access memory (SRAM) is typically predicted by the realistic TDDB model based on gate leakage current (IFAIL) rather than the conventional first breakdown criterion, the relevant failure distributions at IFAIL are non-Weibull including the progressive breakdown (PBD) phase for high-κ/metal gate dielectrics. A new methodology using hybrid two-stage stresses has been developed to study progressive breakdown phase further for high-κ and SiO2. It is demonstrated that VRS can be used effectively for quantitative reliability studies of progressive breakdown phase and final breakdown of high-κ and other dielectric materials; thus it can replace the time-consuming CVS measurements as an efficient methodology and reduce the resources manufacturing cost
    • …
    corecore