5,092 research outputs found

    Automatic vehicle tracking and recognition from aerial image sequences

    Full text link
    This paper addresses the problem of automated vehicle tracking and recognition from aerial image sequences. Motivated by its successes in the existing literature focus on the use of linear appearance subspaces to describe multi-view object appearance and highlight the challenges involved in their application as a part of a practical system. A working solution which includes steps for data extraction and normalization is described. In experiments on real-world data the proposed methodology achieved promising results with a high correct recognition rate and few, meaningful errors (type II errors whereby genuinely similar targets are sometimes being confused with one another). Directions for future research and possible improvements of the proposed method are discussed

    Review of recent research towards power cable life cycle management

    Get PDF
    Power cables are integral to modern urban power transmission and distribution systems. For power cable asset managers worldwide, a major challenge is how to manage effectively the expensive and vast network of cables, many of which are approaching, or have past, their design life. This study provides an in-depth review of recent research and development in cable failure analysis, condition monitoring and diagnosis, life assessment methods, fault location, and optimisation of maintenance and replacement strategies. These topics are essential to cable life cycle management (LCM), which aims to maximise the operational value of cable assets and is now being implemented in many power utility companies. The review expands on material presented at the 2015 JiCable conference and incorporates other recent publications. The review concludes that the full potential of cable condition monitoring, condition and life assessment has not fully realised. It is proposed that a combination of physics-based life modelling and statistical approaches, giving consideration to practical condition monitoring results and insulation response to in-service stress factors and short term stresses, such as water ingress, mechanical damage and imperfections left from manufacturing and installation processes, will be key to success in improved LCM of the vast amount of cable assets around the world

    Cross-Spectral Full and Partial Face Recognition: Preprocessing, Feature Extraction and Matching

    Get PDF
    Cross-spectral face recognition remains a challenge in the area of biometrics. The problem arises from some real-world application scenarios such as surveillance at night time or in harsh environments, where traditional face recognition techniques are not suitable or limited due to usage of imagery obtained in the visible light spectrum. This motivates the study conducted in the dissertation which focuses on matching infrared facial images against visible light images. The study outspreads from aspects of face recognition such as preprocessing to feature extraction and to matching.;We address the problem of cross-spectral face recognition by proposing several new operators and algorithms based on advanced concepts such as composite operators, multi-level data fusion, image quality parity, and levels of measurement. To be specific, we experiment and fuse several popular individual operators to construct a higher-performed compound operator named GWLH which exhibits complementary advantages of involved individual operators. We also combine a Gaussian function with LBP, generalized LBP, WLD and/or HOG and modify them into multi-lobe operators with smoothed neighborhood to have a new type of operators named Composite Multi-Lobe Descriptors. We further design a novel operator termed Gabor Multi-Levels of Measurement based on the theory of levels of measurements, which benefits from taking into consideration the complementary edge and feature information at different levels of measurements.;The issue of image quality disparity is also studied in the dissertation due to its common occurrence in cross-spectral face recognition tasks. By bringing the quality of heterogeneous imagery closer to each other, we successfully achieve an improvement in the recognition performance. We further study the problem of cross-spectral recognition using partial face since it is also a common problem in practical usage. We begin with matching heterogeneous periocular regions and generalize the topic by considering all three facial regions defined in both a characteristic way and a mixture way.;In the experiments we employ datasets which include all the sub-bands within the infrared spectrum: near-infrared, short-wave infrared, mid-wave infrared, and long-wave infrared. Different standoff distances varying from short to intermediate and long are considered too. Our methods are compared with other popular or state-of-the-art methods and are proven to be advantageous

    Multivariate Analysis in Management, Engineering and the Sciences

    Get PDF
    Recently statistical knowledge has become an important requirement and occupies a prominent position in the exercise of various professions. In the real world, the processes have a large volume of data and are naturally multivariate and as such, require a proper treatment. For these conditions it is difficult or practically impossible to use methods of univariate statistics. The wide application of multivariate techniques and the need to spread them more fully in the academic and the business justify the creation of this book. The objective is to demonstrate interdisciplinary applications to identify patterns, trends, association sand dependencies, in the areas of Management, Engineering and Sciences. The book is addressed to both practicing professionals and researchers in the field

    Classification of Frequency and Phase Encoded Steady State Visual Evoked Potentials for Brain Computer Interface Speller Applications using Convolutional Neural Networks

    Get PDF
    Over the past decade there have been substantial improvements in vision based Brain-Computer Interface (BCI) spellers for quadriplegic patient populations. This thesis contains a review of the numerous bio-signals available to BCI researchers, as well as a brief chronology of foremost decoding methodologies used to date. Recent advances in classification accuracy and information transfer rate can be primarily attributed to time consuming patient specific parameter optimization procedures. The aim of the current study was to develop analysis software with potential โ€˜plug-in-and-playโ€™ functionality. To this end, convolutional neural networks, presently established as state of the art analytical techniques for image processing, were utilized. The thesis herein defines deep convolutional neural network architecture for the offline classification of phase and frequency encoded SSVEP bio-signals. Networks were trained using an extensive 35 participant open source Electroencephalographic (EEG) benchmark dataset (Department of Bio-medical Engineering, Tsinghua University, Beijing). Average classification accuracies of 82.24% and information transfer rates of 22.22 bpm were achieved on a BCI naรฏve participant dataset for a 40 target alphanumeric display, in absence of any patient specific parameter optimization

    Robust gait recognition under variable covariate conditions

    Get PDF
    PhDGait is a weak biometric when compared to face, fingerprint or iris because it can be easily affected by various conditions. These are known as the covariate conditions and include clothing, carrying, speed, shoes and view among others. In the presence of variable covariate conditions gait recognition is a hard problem yet to be solved with no working system reported. In this thesis, a novel gait representation, the Gait Flow Image (GFI), is proposed to extract more discriminative information from a gait sequence. GFI extracts the relative motion of body parts in different directions in separate motion descriptors. Compared to the existing model-free gait representations, GFI is more discriminative and robust to changes in covariate conditions. In this thesis, gait recognition approaches are evaluated without the assumption on cooperative subjects, i.e. both the gallery and the probe sets consist of gait sequences under different and unknown covariate conditions. The results indicate that the performance of the existing approaches drops drastically under this more realistic set-up. It is argued that selecting the gait features which are invariant to changes in covariate conditions is the key to developing a gait recognition system without subject cooperation. To this end, the Gait Entropy Image (GEnI) is proposed to perform automatic feature selection on each pair of gallery and probe gait sequences. Moreover, an Adaptive Component and Discriminant Analysis is formulated which seamlessly integrates the feature selection method with subspace analysis for fast and robust recognition. Among various factors that affect the performance of gait recognition, change in viewpoint poses the biggest problem and is treated separately. A novel approach to address this problem is proposed in this thesis by using Gait Flow Image in a cross view gait recognition framework with the view angle of a probe gait sequence unknown. A Gaussian Process classification technique is formulated to estimate the view angle of each probe gait sequence. To measure the similarity of gait sequences across view angles, the correlation of gait sequences from different views is modelled using Canonical Correlation Analysis and the correlation strength is used as a similarity measure. This differs from existing approaches, which reconstruct gait features in different views through 2D view transformation or 3D calibration. Without explicit reconstruction, the proposed method can cope with feature mis-match across view and is more robust against feature noise

    Similarity learning for person re-identification and semantic video retrieval

    Full text link
    Many computer vision problems boil down to the learning of a good visual similarity function that calculates a score of how likely two instances share the same semantic concept. In this thesis, we focus on two problems related to similarity learning: Person Re-Identification, and Semantic Video Retrieval. Person Re-Identification aims to maintain the identity of an individual in diverse locations through different non-overlapping camera views. Starting with two cameras, we propose a novel visual word co-occurrence based appearance model to measure the similarities between pedestrian images. This model naturally accounts for spatial similarities and variations caused by pose, illumination and configuration changes across camera views. As a generalization to multiple camera views, we introduce the Group Membership Prediction (GMP) problem. The GMP problem involves predicting whether a collection of instances shares the same semantic property. In this context, we propose a novel probability model and introduce latent view-specific and view-shared random variables to jointly account for the view-specific appearance and cross-view similarities among data instances. Our method is tested on various benchmarks demonstrating superior accuracy over state-of-art. Semantic Video Retrieval seeks to match complex activities in a surveillance video to user described queries. In surveillance scenarios with noise and clutter usually present, visual uncertainties introduced by error-prone low-level detectors, classifiers and trackers compose a significant part of the semantic gap between user defined queries and the archive video. To bridge the gap, we propose a novel probabilistic activity localization formulation that incorporates learning of object attributes, between-object relationships, and object re-identification without activity-level training data. Our experiments demonstrate that the introduction of similarity learning components effectively compensate for noise and error in previous stages, and result in preferable performance on both aerial and ground surveillance videos. Considering the computational complexity of our similarity learning models, we attempt to develop a way of training complicated models efficiently while remaining good performance. As a proof-of-concept, we propose training deep neural networks for supervised learning of hash codes. With slight changes in the optimization formulation, we could explore the possibilities of incorporating the training framework for Person Re-Identification and related problems.2019-07-09T00:00:00
    • โ€ฆ
    corecore