4,153 research outputs found

    Cross-resolution Face Recognition via Identity-Preserving Network and Knowledge Distillation

    Full text link
    Cross-resolution face recognition has become a challenging problem for modern deep face recognition systems. It aims at matching a low-resolution probe image with high-resolution gallery images registered in a database. Existing methods mainly leverage prior information from high-resolution images by either reconstructing facial details with super-resolution techniques or learning a unified feature space. To address this challenge, this paper proposes a new approach that enforces the network to focus on the discriminative information stored in the low-frequency components of a low-resolution image. A cross-resolution knowledge distillation paradigm is first employed as the learning framework. Then, an identity-preserving network, WaveResNet, and a wavelet similarity loss are designed to capture low-frequency details and boost performance. Finally, an image degradation model is conceived to simulate more realistic low-resolution training data. Consequently, extensive experimental results show that the proposed method consistently outperforms the baseline model and other state-of-the-art methods across a variety of image resolutions

    SRMAE: Masked Image Modeling for Scale-Invariant Deep Representations

    Full text link
    Due to the prevalence of scale variance in nature images, we propose to use image scale as a self-supervised signal for Masked Image Modeling (MIM). Our method involves selecting random patches from the input image and downsampling them to a low-resolution format. Our framework utilizes the latest advances in super-resolution (SR) to design the prediction head, which reconstructs the input from low-resolution clues and other patches. After 400 epochs of pre-training, our Super Resolution Masked Autoencoders (SRMAE) get an accuracy of 82.1% on the ImageNet-1K task. Image scale signal also allows our SRMAE to capture scale invariance representation. For the very low resolution (VLR) recognition task, our model achieves the best performance, surpassing DeriveNet by 1.3%. Our method also achieves an accuracy of 74.84% on the task of recognizing low-resolution facial expressions, surpassing the current state-of-the-art FMD by 9.48%

    CCFace: Classification Consistency for Low-Resolution Face Recognition

    Full text link
    In recent years, deep face recognition methods have demonstrated impressive results on in-the-wild datasets. However, these methods have shown a significant decline in performance when applied to real-world low-resolution benchmarks like TinyFace or SCFace. To address this challenge, we propose a novel classification consistency knowledge distillation approach that transfers the learned classifier from a high-resolution model to a low-resolution network. This approach helps in finding discriminative representations for low-resolution instances. To further improve the performance, we designed a knowledge distillation loss using the adaptive angular penalty inspired by the success of the popular angular margin loss function. The adaptive penalty reduces overfitting on low-resolution samples and alleviates the convergence issue of the model integrated with data augmentation. Additionally, we utilize an asymmetric cross-resolution learning approach based on the state-of-the-art semi-supervised representation learning paradigm to improve discriminability on low-resolution instances and prevent them from forming a cluster. Our proposed method outperforms state-of-the-art approaches on low-resolution benchmarks, with a three percent improvement on TinyFace while maintaining performance on high-resolution benchmarks.Comment: 2023 IEEE International Joint Conference on Biometrics (IJCB

    Image Resolution Susceptibility of Face Recognition Models

    Full text link
    Face recognition approaches often rely on equal image resolution for verification faces on two images. However, in practical applications, those image resolutions are usually not in the same range due to different image capture mechanisms or sources. In this work, we first analyze the impact of image resolutions on the face verification performance with a state-of-the-art face recognition model. For images, synthetically reduced to 5 ×5 px5\, \times 5\, \mathrm{px} resolution, the verification performance drops from 99.23%99.23\% increasingly down to almost 55%55\%. Especially, for cross-resolution image pairs (one high- and one low-resolution image), the verification accuracy decreases even further. We investigate this behavior more in-depth by looking at the feature distances for every 2-image test pair. To tackle this problem, we propose the following two methods: 1) Train a state-of-the-art face-recognition model straightforward with 50%50\% low-resolution images directly within each batch. \\ 2) Train a siamese-network structure and adding a cosine distance feature loss between high- and low-resolution features. Both methods show an improvement for cross-resolution scenarios and can increase the accuracy at very low resolution to approximately 70%70\%. However, a disadvantage is that a specific model needs to be trained for every resolution-pair ...Comment: 19 pages, 15 figures, 2 table

    Computational Mechanisms of Face Perception

    Get PDF
    The intertwined history of artificial intelligence and neuroscience has significantly impacted their development, with AI arising from and evolving alongside neuroscience. The remarkable performance of deep learning has inspired neuroscientists to investigate and utilize artificial neural networks as computational models to address biological issues. Studying the brain and its operational mechanisms can greatly enhance our understanding of neural networks, which has crucial implications for developing efficient AI algorithms. Many of the advanced perceptual and cognitive skills of biological systems are now possible to achieve through artificial intelligence systems, which is transforming our knowledge of brain function. Thus, the need for collaboration between the two disciplines demands emphasis. It\u27s both intriguing and challenging to study the brain using computer science approaches, and this dissertation centers on exploring computational mechanisms related to face perception. Face recognition, being the most active artificial intelligence research area, offers a wealth of data resources as well as a mature algorithm framework. From the perspective of neuroscience, face recognition is an important indicator of social cognitive formation and neural development. The ability to recognize faces is one of the most important cognitive functions. We first discuss the problem of how the brain encodes different face identities. By using DNNs to extract features from complex natural face images and project them into the feature space constructed by dimension reduction, we reveal a new face code in the human medial temporal lobe (MTL), where neurons encode visually similar identities. On this basis, we discover a subset of DNN units that are selective for facial identity. These identity-selective units exhibit a general ability to discriminate novel faces. By establishing coding similarities with real primate neurons, our study provides an important approach to understanding primate facial coding. Lastly, we discuss the impact of face learning during the critical period. We identify a critical period during DNN training and systematically discuss the use of facial information by the neural network both inside and outside the critical period. We further provide a computational explanation for the critical period influencing face learning through learning rate changes. In addition, we show an alternative method to partially recover the model outside the critical period by knowledge refinement and attention shifting. Our current research not only highlights the importance of training orientation and visual experience in shaping neural responses to face features and reveals potential mechanisms for face recognition but also provides a practical set of ideas to test hypotheses and reconcile previous findings in neuroscience using computer methods

    Octuplet Loss: Make Face Recognition Robust to Image Resolution

    Full text link
    Image resolution, or in general, image quality, plays an essential role in the performance of today's face recognition systems. To address this problem, we propose a novel combination of the popular triplet loss to improve robustness against image resolution via fine-tuning of existing face recognition models. With octuplet loss, we leverage the relationship between high-resolution images and their synthetically down-sampled variants jointly with their identity labels. Fine-tuning several state-of-the-art approaches with our method proves that we can significantly boost performance for cross-resolution (high-to-low resolution) face verification on various datasets without meaningfully exacerbating the performance on high-to-high resolution images. Our method applied on the FaceTransformer network achieves 95.12% face verification accuracy on the challenging XQLFW dataset while reaching 99.73% on the LFW database. Moreover, the low-to-low face verification accuracy benefits from our method. We release our code to allow seamless integration of the octuplet loss into existing frameworks
    • …
    corecore