3,521 research outputs found

    L1-norm Tucker Tensor Decomposition

    Full text link
    Tucker decomposition is a common method for the analysis of multi-way/tensor data. Standard Tucker has been shown to be sensitive against heavy corruptions, due to its L2-norm-based formulation which places squared emphasis to peripheral entries. In this work, we explore L1-Tucker, an L1-norm based reformulation of standard Tucker decomposition. After formulating the problem, we present two algorithms for its solution, namely L1-norm Higher-Order Singular Value Decomposition (L1-HOSVD) and L1-norm Higher-Order Orthogonal Iterations (L1-HOOI). The presented algorithms are accompanied by complexity and convergence analysis. Our numerical studies on tensor reconstruction and classification corroborate that L1-Tucker, implemented by means of the proposed methods, attains similar performance to standard Tucker when the processed data are corruption-free, while it exhibits sturdy resistance against heavily corrupted entries

    Robust Low-Rank Tensor Ring Completion

    Full text link
    Low-rank tensor completion recovers missing entries based on different tensor decompositions. Due to its outstanding performance in exploiting some higher-order data structure, low rank tensor ring has been applied in tensor completion. To further deal with its sensitivity to sparse component as it does in tensor principle component analysis, we propose robust tensor ring completion (RTRC), which separates latent low-rank tensor component from sparse component with limited number of measurements. The low rank tensor component is constrained by the weighted sum of nuclear norms of its balanced unfoldings, while the sparse component is regularized by its l1 norm. We analyze the RTRC model and gives the exact recovery guarantee. The alternating direction method of multipliers is used to divide the problem into several sub-problems with fast solutions. In numerical experiments, we verify the recovery condition of the proposed method on synthetic data, and show the proposed method outperforms the state-of-the-art ones in terms of both accuracy and computational complexity in a number of real-world data based tasks, i.e., light-field image recovery, shadow removal in face images, and background extraction in color video

    Bayesian Tensorized Neural Networks with Automatic Rank Selection

    Full text link
    Tensor decomposition is an effective approach to compress over-parameterized neural networks and to enable their deployment on resource-constrained hardware platforms. However, directly applying tensor compression in the training process is a challenging task due to the difficulty of choosing a proper tensor rank. In order to achieve this goal, this paper proposes a Bayesian tensorized neural network. Our Bayesian method performs automatic model compression via an adaptive tensor rank determination. We also present approaches for posterior density calculation and maximum a posteriori (MAP) estimation for the end-to-end training of our tensorized neural network. We provide experimental validation on a fully connected neural network, a CNN and a residual neural network where our work produces 7.4×7.4\times to 137×137\times more compact neural networks directly from the training

    Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis

    Full text link
    The widespread use of multi-sensor technology and the emergence of big datasets has highlighted the limitations of standard flat-view matrix models and the necessity to move towards more versatile data analysis tools. We show that higher-order tensors (i.e., multiway arrays) enable such a fundamental paradigm shift towards models that are essentially polynomial and whose uniqueness, unlike the matrix methods, is guaranteed under verymild and natural conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical backbone, data analysis techniques using tensor decompositions are shown to have great flexibility in the choice of constraints that match data properties, and to find more general latent components in the data than matrix-based methods. A comprehensive introduction to tensor decompositions is provided from a signal processing perspective, starting from the algebraic foundations, via basic Canonical Polyadic and Tucker models, through to advanced cause-effect and multi-view data analysis schemes. We show that tensor decompositions enable natural generalizations of some commonly used signal processing paradigms, such as canonical correlation and subspace techniques, signal separation, linear regression, feature extraction and classification. We also cover computational aspects, and point out how ideas from compressed sensing and scientific computing may be used for addressing the otherwise unmanageable storage and manipulation problems associated with big datasets. The concepts are supported by illustrative real world case studies illuminating the benefits of the tensor framework, as efficient and promising tools for modern signal processing, data analysis and machine learning applications; these benefits also extend to vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker decomposition, HOSVD, tensor networks, Tensor Train

    Tensor train-Karhunen-Lo\`eve expansion for continuous-indexed random fields using higher-order cumulant functions

    Full text link
    The goals of this work are two-fold: firstly, to propose a new theoretical framework for representing random fields on a large class of multidimensional geometrical domain in the tensor train format; secondly, to develop a new algorithm framework for accurately computing the modes and the second and third-order cumulant tensors within moderate time. The core of the new theoretical framework is the tensor train decomposition of cumulant functions. This decomposition is accurately computed with a novel rank-revealing algorithm. Compared with existing Galerkin-type and collocation-type methods, the proposed computational procedure totally removes the need of selecting the basis functions or collocation points and the quadrature points, which not only greatly enhances adaptivity, but also avoids solving large-scale eigenvalue problems. Moreover, by computing with third-order cumulant functions, the new theoretical and algorithm frameworks show great potential for representing general non-Gaussian non-homogeneous random fields. Three numerical examples, including a three-dimensional random field discretization problem, illustrate the efficiency and accuracy of the proposed algorithm framework

    Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems

    Full text link
    In this paper we review basic and emerging models and associated algorithms for large-scale tensor networks, especially Tensor Train (TT) decompositions using novel mathematical and graphical representations. We discus the concept of tensorization (i.e., creating very high-order tensors from lower-order original data) and super compression of data achieved via quantized tensor train (QTT) networks. The purpose of a tensorization and quantization is to achieve, via low-rank tensor approximations "super" compression, and meaningful, compact representation of structured data. The main objective of this paper is to show how tensor networks can be used to solve a wide class of big data optimization problems (that are far from tractable by classical numerical methods) by applying tensorization and performing all operations using relatively small size matrices and tensors and applying iteratively optimized and approximative tensor contractions. Keywords: Tensor networks, tensor train (TT) decompositions, matrix product states (MPS), matrix product operators (MPO), basic tensor operations, tensorization, distributed representation od data optimization problems for very large-scale problems: generalized eigenvalue decomposition (GEVD), PCA/SVD, canonical correlation analysis (CCA).Comment: arXiv admin note: text overlap with arXiv:1403.204

    Sample, computation vs storage tradeoffs for classification using tensor subspace models

    Full text link
    In this paper, we exhibit the tradeoffs between the (training) sample, computation and storage complexity for the problem of supervised classification using signal subspace estimation. Our main tool is the use of tensor subspaces, i.e. subspaces with a Kronecker structure, for embedding the data into lower dimensions. Among the subspaces with a Kronecker structure, we show that using subspaces with a hierarchical structure for representing data leads to improved tradeoffs. One of the main reasons for the improvement is that embedding data into these hierarchical Kronecker structured subspaces prevents overfitting at higher latent dimensions.Comment: 5 Page

    An optimization approach for dynamical Tucker tensor approximation

    Full text link
    An optimization-based approach for the Tucker tensor approximation of parameter-dependent data tensors and solutions of tensor differential equations with low Tucker rank is presented. The problem of updating the tensor decomposition is reformulated as fitting problem subject to the tangent space without relying on an orthogonality gauge condition. A discrete Euler scheme is established in an alternating least squares framework, where the quadratic subproblems reduce to trace optimization problems, that are shown to be explicitly solvable and accessible using SVD of small size. In the presence of small singular values, instability for larger ranks is reduced, since the method does not need the (pseudo) inverse of matricizations of the core tensor. Regularization of Tikhonov type can be used to compensate for the lack of uniqueness in the tangent space. The method is validated numerically and shown to be stable also for larger ranks in the case of small singular values of the core unfoldings. Higher order explicit integrators of Runge-Kutta type can be composed.Comment: 18 pages, 10 figure

    Non-recurrent Traffic Congestion Detection with a Coupled Scalable Bayesian Robust Tensor Factorization Model

    Full text link
    Non-recurrent traffic congestion (NRTC) usually brings unexpected delays to commuters. Hence, it is critical to accurately detect and recognize the NRTC in a real-time manner. The advancement of road traffic detectors and loop detectors provides researchers with a large-scale multivariable temporal-spatial traffic data, which allows the deep research on NRTC to be conducted. However, it remains a challenging task to construct an analytical framework through which the natural spatial-temporal structural properties of multivariable traffic information can be effectively represented and exploited to better understand and detect NRTC. In this paper, we present a novel analytical training-free framework based on coupled scalable Bayesian robust tensor factorization (Coupled SBRTF). The framework can couple multivariable traffic data including traffic flow, road speed, and occupancy through sharing a similar or the same sparse structure. And, it naturally captures the high-dimensional spatial-temporal structural properties of traffic data by tensor factorization. With its entries revealing the distribution and magnitude of NRTC, the shared sparse structure of the framework compasses sufficiently abundant information about NRTC. While the low-rank part of the framework, expresses the distribution of general expected traffic condition as an auxiliary product. Experimental results on real-world traffic data show that the proposed method outperforms coupled Bayesian robust principal component analysis (coupled BRPCA), the rank sparsity tensor decomposition (RSTD), and standard normal deviates (SND) in detecting NRTC. The proposed method performs even better when only traffic data in weekdays are utilized, and hence can provide more precise estimation of NRTC for daily commuters

    Vectorial Dimension Reduction for Tensors Based on Bayesian Inference

    Full text link
    Dimensionality reduction for high-order tensors is a challenging problem. In conventional approaches, higher order tensors are `vectorized` via Tucker decomposition to obtain lower order tensors. This will destroy the inherent high-order structures or resulting in undesired tensors, respectively. This paper introduces a probabilistic vectorial dimensionality reduction model for tensorial data. The model represents a tensor by employing a linear combination of same order basis tensors, thus it offers a mechanism to directly reduce a tensor to a vector. Under this expression, the projection base of the model is based on the tensor CandeComp/PARAFAC (CP) decomposition and the number of free parameters in the model only grows linearly with the number of modes rather than exponentially. A Bayesian inference has been established via the variational EM approach. A criterion to set the parameters (factor number of CP decomposition and the number of extracted features) is empirically given. The model outperforms several existing PCA-based methods and CP decomposition on several publicly available databases in terms of classification and clustering accuracy.Comment: Submiting to TNNL
    • …
    corecore