19,092 research outputs found

    Local Descriptors Optimized for Average Precision

    Full text link
    Extraction of local feature descriptors is a vital stage in the solution pipelines for numerous computer vision tasks. Learning-based approaches improve performance in certain tasks, but still cannot replace handcrafted features in general. In this paper, we improve the learning of local feature descriptors by optimizing the performance of descriptor matching, which is a common stage that follows descriptor extraction in local feature based pipelines, and can be formulated as nearest neighbor retrieval. Specifically, we directly optimize a ranking-based retrieval performance metric, Average Precision, using deep neural networks. This general-purpose solution can also be viewed as a listwise learning to rank approach, which is advantageous compared to recent local ranking approaches. On standard benchmarks, descriptors learned with our formulation achieve state-of-the-art results in patch verification, patch retrieval, and image matching.Comment: 13 pages, 8 figures. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    The Parameter Houlihan: a solution to high-throughput identifiability indeterminacy for brutally ill-posed problems

    Get PDF
    One way to interject knowledge into clinically impactful forecasting is to use data assimilation, a nonlinear regression that projects data onto a mechanistic physiologic model, instead of a set of functions, such as neural networks. Such regressions have an advantage of being useful with particularly sparse, non-stationary clinical data. However, physiological models are often nonlinear and can have many parameters, leading to potential problems with parameter identifiability, or the ability to find a unique set of parameters that minimize forecasting error. The identifiability problems can be minimized or eliminated by reducing the number of parameters estimated, but reducing the number of estimated parameters also reduces the flexibility of the model and hence increases forecasting error. We propose a method, the parameter Houlihan, that combines traditional machine learning techniques with data assimilation, to select the right set of model parameters to minimize forecasting error while reducing identifiability problems. The method worked well: the data assimilation-based glucose forecasts and estimates for our cohort using the Houlihan-selected parameter sets generally also minimize forecasting errors compared to other parameter selection methods such as by-hand parameter selection. Nevertheless, the forecast with the lowest forecast error does not always accurately represent physiology, but further advancements of the algorithm provide a path for improving physiologic fidelity as well. Our hope is that this methodology represents a first step toward combining machine learning with data assimilation and provides a lower-threshold entry point for using data assimilation with clinical data by helping select the right parameters to estimate
    • …
    corecore