445 research outputs found

    SRAM PUF의 신뢰성 개선을 위한 전원 공급 기법

    Get PDF
    학위논문 (석사) -- 서울대학교 대학원 : 융합과학기술대학원 융합과학부(지능형융합시스템전공), 2021. 2. 전동석.PUF (Physically Unclonable Function)은 하드웨어 레벨의 인증 과 정에서 널리 이용되는 방법이다. 그 중에서도 SRAM PUF는 가장 잘 알 려진 PUF의 방법론이다. 그러나 예측 불가능한 동작으로 인해 발생되는 낮은 재생산성과 전원 공급 과정에서 발생하는 노이즈의 문제를 가지고 있다. 본 논문에서는 효과적으로 SRAM PUF의 재생산성을 향상시킬 수 있는 두 가지 전원 공급 기법을 제안한다. 제시한 기법들은 값이 산출되 는 영역 혹은 전원 공급원의 기울기(ramp-up 시간)를 조절함으로써 원 하지 않는 비트의 뒤집힘(flipping) 현상을 줄인다. 180nm 공정으로 제 작된 테스트 칩을 이용한 측정 결과 재생산성이 2.2배 향상되었을 뿐만 아니라 NUBs(Native Unstable Bits)는 54.87% 그리고 BER (Bit Error Rate)는 55.05% 감소한 것을 확인하였다.Physically unclonable function (PUF) is a widely used hardware-level identification method. SRAM-based PUFs are the most well-known PUF topology, but they typically suffer from low reproducibility due to non-deterministic behaviors and noise during power-up process. In this work, we propose two power-up control techniques that effectively improve reproducibility of the SRAM PUFs. The techniques reduce undesirable bit flipping during evaluation by controlling either evaluation region or power supply ramp-up speed. Measurement results from the 180 nm test chip confirm that native unstable bits (NUBs) are reduced by 54.87% and bit error rate (BER) decreases by 55.05% while reproducibility increases by 2.2×.Chapter 1 Introduction 1 1.1 PUF in Hardware Securit 1 1.2 Prior Works and Motivation 2 Chapter 2 Related works and Motivation 5 2.1 Uniqueness 7 2.2 Reproducibility 7 2.3 Hold Static Noise Margin (SNM) 8 2.4 Bit Error Rate (BER) 9 2.5 PUF Static Noise Margin Ratio (PSNMratio) 9 Chapter 3 Microarchitecture-Aware Code Generation 11 3.1 Scheme 1: Developing Fingerprint in Sub-Threshold Region 13 3.2 Scheme 2: Controlling Voltage Ramp-up Speed 17 Chapter 4 Experimental Evaluation 19 4.1 Experimental Setup 19 4.2 Evaluation Results 21 Chapter 5 Conclusion 28 Bibliography 29 Abstract in Korean 33Maste

    PUF authentication and key-exchange by substring matching

    Get PDF
    Mechanisms for operating a prover device and a verifier device so that the verifier device can verify the authenticity of the prover device. The prover device generates a data string by: (a) submitting a challenge to a physical unclonable function (PUF) to obtain a response string, (b) selecting a substring from the response string, (c) injecting the selected substring into the data string, and (d) injecting random bits into bit positions of the data string not assigned to the selected substring. The verifier: (e) generates an estimated response string by evaluating a computational model of the PUF based on the challenge; (f) performs a search process to identify the selected substring within the data string using the estimated response string; and (g) determines whether the prover device is authentic based on a measure of similarity between the identified substring and a corresponding substring of the estimated response string

    Design of hardware-based security solutions for interconnected systems

    Get PDF
    Among all the different research lines related to hardware security, there is a particular topic that strikingly attracts attention. That topic is the research regarding the so-called Physical Unclonable Functions (PUF). The PUFs, as can be seen throughout the Thesis, present the novel idea of connecting digital values uniquely to a physical entity, just as human biometrics does, but with electronic devices. This beautiful idea is not free of obstacles, and is the core of this Thesis. It is studied from different angles in order to better understand, in particular, SRAM PUFs, and to be able to integrate them into complex systems that expand their potential. During Chapter 1, the PUFs, their properties and their main characteristics are defined. In addition, the different types of PUFs, and their main applications in the field of security are also summarized. Once we know what a PUF is, and the types of them we can find, throughout Chapter 2 an exhaustive analysis of the SRAM PUFs is carried out, given the wide availability of SRAMs today in most electronic circuits (which dramatically reduces the cost of deploying any solution). An algorithm is proposed to improve the characteristics of SRAM PUFs, both to generate identifiers and to generate random numbers, simultaneously. The results of this Chapter demonstrates the feasibility of implementing the algorithm, so in the following Chapters it is explored its integration in both hardware and software systems. In Chapter 3 the hardware design and integration of the algorithm introduced in Chapter 2 is described. The design is presented together with some examples of use that demonstrate the possible practical realizations in VLSI designs. In an analogous way, in Chapter 4 the software design and integration of the algorithm introduced in Chapter 2 is described. The design is presented together with some examples of use that demonstrate the possible practical realizations in low-power IoT devices. The algorithm is also described as part of a secure firmware update protocol that has been designed to be resistant to most current attacks, ensuring the integrity and trustworthiness of the updated firmware.In Chapter 5, following the integration of PUF-based solutions into protocols, PUFs are used as part of an authentication protocol that uses zero-knowledge proofs. The cryptographic protocol is a Lattice-based post-quantum protocol that guarantees the integrity and anonymity of the identity generated by the PUF. This type of architecture prevents any type of impersonation or virtual copy of the PUF, since this is unknown and never leaves the device. Specifically, this type of design has been carried out with the aim of having traceability of identities without ever knowing the identity behind, which is very interesting for blockchain technologies. Finally, in Chapter 6 a new type of PUF, named as BPUF (Behavioral and Physical Unclonable Function), is proposed and analyzed according to the definitions given in Chapter 1. This new type of PUF significantly changes the metrics and concepts to which we were used to in previous Chapters. A new multi-modal authentication protocol is presented in this Chapter, taking advantage of the challenge-response tuples of BPUFs. An example of BPUFs is illustrated with SRAMs. A proposal to integrate the BPUFs described in Chapter 6 into the protocol of Chapter 5, as well as the final remarks of the Thesis, can be found in Chapter 7

    Printed Electronics-Based Physically Unclonable Functions for Lightweight Security in the Internet of Things

    Get PDF
    Die moderne Gesellschaft strebt mehr denn je nach digitaler Konnektivität - überall und zu jeder Zeit - was zu Megatrends wie dem Internet der Dinge (Internet of Things, IoT) führt. Bereits heute kommunizieren und interagieren „Dinge“ autonom miteinander und werden in Netzwerken verwaltet. In Zukunft werden Menschen, Daten und Dinge miteinander verbunden sein, was auch als Internet von Allem (Internet of Everything, IoE) bezeichnet wird. Milliarden von Geräten werden in unserer täglichen Umgebung allgegenwärtig sein und über das Internet in Verbindung stehen. Als aufstrebende Technologie ist die gedruckte Elektronik (Printed Electronics, PE) ein Schlüsselelement für das IoE, indem sie neuartige Gerätetypen mit freien Formfaktoren, neuen Materialien auf einer Vielzahl von Substraten mit sich bringt, die flexibel, transparent und biologisch abbaubar sein können. Darüber hinaus ermöglicht PE neue Freiheitsgrade bei der Anpassbarkeit von Schaltkreisen sowie die kostengünstige und großflächige Herstellung am Einsatzort. Diese einzigartigen Eigenschaften von PE ergänzen herkömmliche Technologien auf Siliziumbasis. Additive Fertigungsprozesse ermöglichen die Realisierung von vielen zukunftsträchtigen Anwendungen wie intelligente Objekte, flexible Displays, Wearables im Gesundheitswesen, umweltfreundliche Elektronik, um einige zu nennen. Aus der Sicht des IoE ist die Integration und Verbindung von Milliarden heterogener Geräte und Systeme eine der größten zu lösenden Herausforderungen. Komplexe Hochleistungsgeräte interagieren mit hochspezialisierten, leichtgewichtigen elektronischen Geräten, wie z.B. Smartphones mit intelligenten Sensoren. Daten werden in der Regel kontinuierlich gemessen, gespeichert und mit benachbarten Geräten oder in der Cloud ausgetauscht. Dabei wirft die Fülle an gesammelten und verarbeiteten Daten Bedenken hinsichtlich des Datenschutzes und der Sicherheit auf. Herkömmliche kryptografische Operationen basieren typischerweise auf deterministischen Algorithmen, die eine hohe Schaltungs- und Systemkomplexität erfordern, was sie wiederum für viele leichtgewichtige Geräte ungeeignet macht. Es existieren viele Anwendungsbereiche, in denen keine komplexen kryptografischen Operationen erforderlich sind, wie z.B. bei der Geräteidentifikation und -authentifizierung. Dabei hängt das Sicherheitslevel hauptsächlich von der Qualität der Entropiequelle und der Vertrauenswürdigkeit der abgeleiteten Schlüssel ab. Statistische Eigenschaften wie die Einzigartigkeit (Uniqueness) der Schlüssel sind von großer Bedeutung, um einzelne Entitäten genau unterscheiden zu können. In den letzten Jahrzehnten hat die Hardware-intrinsische Sicherheit, insbesondere Physically Unclonable Functions (PUFs), eine große Strahlkraft hinsichtlich der Bereitstellung von Sicherheitsfunktionen für IoT-Geräte erlangt. PUFs verwenden ihre inhärenten Variationen, um gerätespezifische eindeutige Kennungen abzuleiten, die mit Fingerabdrücken in der Biometrie vergleichbar sind. Zu den größten Potenzialen dieser Technologie gehören die Verwendung einer echten Zufallsquelle, die Ableitung von Sicherheitsschlüsseln nach Bedarf sowie die inhärente Schlüsselspeicherung. In Kombination mit den einzigartigen Merkmalen der PE-Technologie werden neue Möglichkeiten eröffnet, um leichtgewichtige elektronische Geräte und Systeme abzusichern. Obwohl PE noch weit davon entfernt ist, so ausgereift und zuverlässig wie die Siliziumtechnologie zu sein, wird in dieser Arbeit gezeigt, dass PE-basierte PUFs vielversprechende Sicherheitsprimitiven für die Schlüsselgenerierung zur eindeutigen Geräteidentifikation im IoE sind. Dabei befasst sich diese Arbeit in erster Linie mit der Entwicklung, Untersuchung und Bewertung von PE-basierten PUFs, um Sicherheitsfunktionen für ressourcenbeschränkte gedruckte Geräte und Systeme bereitzustellen. Im ersten Beitrag dieser Arbeit stellen wir das skalierbare, auf gedruckter Elektronik basierende Differential Circuit PUF (DiffC-PUF) Design vor, um sichere Schlüssel für Sicherheitsanwendungen für ressourcenbeschränkte Geräte bereitzustellen. Die DiffC-PUF ist als hybride Systemarchitektur konzipiert, die siliziumbasierte und gedruckte Komponenten enthält. Es wird eine eingebettete PUF-Plattform entwickelt, um die Charakterisierung von siliziumbasierten und gedruckten PUF-Cores in großem Maßstab zu ermöglichen. Im zweiten Beitrag dieser Arbeit werden siliziumbasierte PUF-Cores auf Basis diskreter Komponenten hergestellt und statistische Tests unter realistischen Betriebsbedingungen durchgeführt. Eine umfassende experimentelle Analyse der PUF-Sicherheitsmetriken wird vorgestellt. Die Ergebnisse zeigen, dass die DiffC-PUF auf Siliziumbasis nahezu ideale Werte für die Uniqueness- und Reliability-Metriken aufweist. Darüber hinaus werden die Identifikationsfähigkeiten der DiffC-PUF untersucht, und es stellte sich heraus, dass zusätzliches Post-Processing die Identifizierbarkeit des Identifikationssystems weiter verbessern kann. Im dritten Beitrag dieser Arbeit wird zunächst ein Evaluierungsworkflow zur Simulation von DiffC-PUFs basierend auf gedruckter Elektronik vorgestellt, welche auch als Hybrid-PUFs bezeichnet werden. Hierbei wird eine Python-basierte Simulationsumgebung vorgestellt, welche es ermöglicht, die Eigenschaften und Variationen gedruckter PUF-Cores basierend auf Monte Carlo (MC) Simulationen zu untersuchen. Die Simulationsergebnisse zeigen, dass die Sicherheitsmetriken im besten Betriebspunkt nahezu ideal sind. Des Weiteren werden angefertigte PE-basierte PUF-Cores für statistische Tests unter verschiedenen Betriebsbedingungen, einschließlich Schwankungen der Umgebungstemperatur, der relativen Luftfeuchtigkeit und der Versorgungsspannung betrieben. Die experimentell bestimmten Resultate der Uniqueness-, Bit-Aliasing- und Uniformity-Metriken stimmen gut mit den Simulationsergebnissen überein. Der experimentell ermittelte durchschnittliche Reliability-Wert ist relativ niedrig, was durch die fehlende Passivierung und Einkapselung der gedruckten Transistoren erklärt werden kann. Die Untersuchung der Identifikationsfähigkeiten basierend auf den PUF-Responses zeigt, dass die Hybrid-PUF ohne zusätzliches Post-Processing nicht für kryptografische Anwendungen geeignet ist. Die Ergebnisse zeigen aber auch, dass sich die Hybrid-PUF zur Geräteidentifikation eignet. Der letzte Beitrag besteht darin, in die Perspektive eines Angreifers zu wechseln. Um die Sicherheitsfähigkeiten der Hybrid-PUF beurteilen zu können, wird eine umfassende Sicherheitsanalyse nach Art einer Kryptoanalyse durchgeführt. Die Analyse der Entropie der Hybrid-PUF zeigt, dass seine Anfälligkeit für Angriffe auf Modellbasis hauptsächlich von der eingesetzten Methode zur Generierung der PUF-Challenges abhängt. Darüber hinaus wird ein Angriffsmodell eingeführt, um die Leistung verschiedener mathematischer Klonangriffe auf der Grundlage von abgehörten Challenge-Response Pairs (CRPs) zu bewerten. Um die Hybrid-PUF zu klonen, wird ein Sortieralgorithmus eingeführt und mit häufig verwendeten Classifiers für überwachtes maschinelles Lernen (ML) verglichen, einschließlich logistischer Regression (LR), Random Forest (RF) sowie Multi-Layer Perceptron (MLP). Die Ergebnisse zeigen, dass die Hybrid-PUF anfällig für modellbasierte Angriffe ist. Der Sortieralgorithmus profitiert von kürzeren Trainingszeiten im Vergleich zu den ML-Algorithmen. Im Falle von fehlerhaft abgehörten CRPs übertreffen die ML-Algorithmen den Sortieralgorithmus

    Subwavelength Engineering of Silicon Photonic Waveguides

    Get PDF
    The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core building block of modern integrated photonic systems. Subwavelength structuring of silicon waveguides shows immense promise in a variety of field of study, such as, tailoring electromagnetic near fields, enhancing light-matter interactions, engineering anisotropy and effective medium effects, modal and dispersion engineering, nanoscale sensitivity etc. In this work, we are going to exploit the boundary conditions of modern silicon photonics through subwavelength engineering by means of novel ultra-low mode area v-groove waveguide to answer long-lasting challenges, such as, fabrication of such sophisticated structure while ensuring efficient coupling of light between dissimilar modes. Moreover, physical unclonable function derived from our nanoscale sidewall crystalline gratings should give us a fast and reliable optical security solution with improved information density. This research should enable new avenues of subwavelength engineered silicon photonic waveguide and answer to many unsolved questions of silicon photonics foundries
    corecore